Gauch Jr, H. G., Gauch Jr, H. G., and Gauch, H. G. (2003).
Scientific method in practice. Cambridge University
Press.
Hamada, K., Ishikawa, F., Masuda, S., Myojin, T., Nishi,
Y., Ogawa, H., Toku, T., Tokumoto, S., Tsuchiya, K.,
Ujita, Y., et al. (2020). Guidelines for quality assur-
ance of machine learning-based artificial intelligence.
In SEKE, pages 335–341.
Hanhirova, J., Debner, A., Hyypp
¨
a, M., and Hirvisalo, V.
(2020). A machine learning environment for eval-
uating autonomous driving software. arXiv preprint
arXiv:2003.03576.
Hawkins, D. M. (1980). Identification of outliers, vol-
ume 11. Springer.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Heaton, J. (2016). An empirical analysis of feature en-
gineering for predictive modeling. In SoutheastCon
2016, pages 1–6. IEEE.
Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and
Song, D. (2021). Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 15262–
15271.
Hosseini, H. and Poovendran, R. (2018). Semantic adver-
sarial examples. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
Workshops, pages 1614–1619.
Huang, X., Kwiatkowska, M., Wang, S., and Wu, M.
(2017). Safety verification of deep neural networks.
In International conference on computer aided verifi-
cation, pages 3–29. Springer.
Isele, D., Rahimi, R., Cosgun, A., Subramanian, K., and Fu-
jimura, K. (2018). Navigating occluded intersections
with autonomous vehicles using deep reinforcement
learning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 2034–2039.
IEEE.
Islam, M. R., Das, S., Doppa, J. R., and Natara-
jan, S. (2018). Glad: Glocalized anomaly detec-
tion via human-in-the-loop learning. arXiv preprint
arXiv:1810.01403.
Jones, D. S. (1979). Elementary information theory. Oxford
University Press, USA.
Kwiatkowska, M. Z. (2019). Safety verification for deep
neural networks with provable guarantees. In 30th
International Conference on Concurrency Theory
(CONCUR 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.
Lateef, F. and Ruichek, Y. (2019). Survey on semantic seg-
mentation using deep learning techniques. Neurocom-
puting, 338:321–348.
Lenarduzzi, V., Lomio, F., Moreschini, S., Taibi, D., and
Tamburri, D. A. (2021). Software quality for ai:
Where we are now? In International Conference on
Software Quality, pages 43–53. Springer.
Nortey, E. N., Pometsey, R., Asiedu, L., Iddi, S., and Mettle,
F. O. (2021). Anomaly detection in health insurance
claims using bayesian quantile regression. Interna-
tional Journal of Mathematics and Mathematical Sci-
ences, 2021.
Pei, K., Cao, Y., Yang, J., and Jana, S. (2017). Deepxplore:
Automated whitebox testing of deep learning systems.
In proceedings of the 26th Symposium on Operating
Systems Principles, pages 1–18.
Poth, A., Meyer, B., Schlicht, P., and Riel, A. (2020). Qual-
ity assurance for machine learning–an approach to
function and system safeguarding. In 2020 IEEE 20th
International Conference on Software Quality, Relia-
bility and Security (QRS), pages 22–29. IEEE.
Reinke, A., Tizabi, M. D., Eisenmann, M., and Maier-Hein,
L. (2021). Common pitfalls and recommendations for
grand challenges in medical artificial intelligence. Eu-
ropean Urology Focus, 7(4):710–712.
Secci, F. and Ceccarelli, A. (2020). Rgb cameras failures
and their effects in autonomous driving applications.
arXiv preprint arXiv:2008.05938.
Tian, Y., Pei, K., Jana, S., and Ray, B. (2018). Deeptest:
Automated testing of deep-neural-network-driven au-
tonomous cars. In Proceedings of the 40th inter-
national conference on software engineering, pages
303–314.
Tjeng, V., Xiao, K., and Tedrake, R. (2017). Evaluating
robustness of neural networks with mixed integer pro-
gramming. arXiv preprint arXiv:1711.07356.
Touzani, S., Granderson, J., and Fernandes, S. (2018). Gra-
dient boosting machine for modeling the energy con-
sumption of commercial buildings. Energy and Build-
ings, 158:1533–1543.
Waldmann, E. (2018). Quantile regression: a short story on
how and why. Statistical Modelling, 18(3-4):203–218.
Wicker, M., Huang, X., and Kwiatkowska, M. (2018).
Feature-guided black-box safety testing of deep neu-
ral networks. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 408–426. Springer.
Wu, Y., Yu, T., and Hua, G. (2003). Tracking appearances
with occlusions. In 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, 2003. Proceedings., volume 1, pages I–I. IEEE.
Xie, X., Ho, J. W., Murphy, C., Kaiser, G., Xu, B., and
Chen, T. Y. (2011). Testing and validating machine
learning classifiers by metamorphic testing. Journal
of Systems and Software, 84(4):544–558.
Xu, Q., Fan, Z., Jia, W., and Jiang, C. (2019). Quantile re-
gression neural network-based fault detection scheme
for wind turbines with application to monitoring a
bearing. Wind Energy, 22(10):1390–1401.
Zhang, Y. and Haghani, A. (2015). A gradient boosting
method to improve travel time prediction. Trans-
portation Research Part C: Emerging Technologies,
58:308–324.
Zheng, A. and Casari, A. (2018). Feature engineering for
machine learning: principles and techniques for data
scientists. ” O’Reilly Media, Inc.”.
Highly Automated Corner Cases Extraction: Using Gradient Boost Quantile Regression for AI Quality Assurance
73