discharge from the body or long-term retention in
the body. Last but not least, it is also vital to study
gold nanoparticles that combine photothermal
therapy with other tumor treatment methods, such as
drug delivery or optical imaging, so as to achieve a
comprehensive cancer treatment that integrates
diagnosis and treatment.
REFERENCES
Abadeer, N. S., & Murphy, C. J. (2016). Recent progress
in cancer thermal therapy using gold nanoparticles.
Journal of Physical Chemistry. C, 120(9), 4691–4716.
https://doi.org/10.1021/acs.jpcc.5b11232
Austin, L. A., Mackey, M. A., Dreaden, E. C. et al. (2014).
The optical, photothermal, and facile surface chemical
properties of gold and silver nanoparticles in
biodiagnostics, therapy, and drug delivery. Archives of
Toxicology, 88(7), 1391–1417.
https://doi.org/10.1007/s00204-014-1245-3
Barram, L. F. A. (2021). Laser enhancement of cancer cell
destruction by photothermal therapy conjugated
glutathione (GSH)-coated small–sized gold
nanoparticles. Lasers in Medical Science, 36(2), 325–
337. https://doi.org/10.1007/s10103-020-03033-y
Brolossy, T. A., Abdallah, T., Mohamed, M. et al. (2008).
Shape and size dependence of the surface plasmon
resonance of gold nanoparticles studied by
photoacoustic technique. The European Physical
Journal. ST, Special Topics, 153(1), 361–364.
https://doi.org/10.1140/epjst/e2008-00462-0
Cheng, X., Sun, R., Yin, L. et al. (2017). Light-Triggered
assembly of gold nanoparticles for photothermal
therapy and photoacoustic imaging of tumors in vivo.
Advanced Materials (Weinheim), 29(6), 1604894-n/a.
https://doi.org/10.1002/adma.201604894
Cheng, Y., Chang, Y., Feng, Y. et al. (2018). Deep-Level
defect enhanced photothermal performance of bismuth
Sulfide–Gold heterojunction nanorods for
photothermal therapy of cancer guided by computed
tomography imaging. Angewandte Chemie
(International Ed.), 57(1), 246–251.
https://doi.org/10.1002/anie.201710399
Dreaden, E. C., Alkilany, A. M., Huang, X. et al. (2012).
The golden age: Gold nanoparticles for biomedicine.
Chemical Society Reviews, 41(7), 2740–2779.
https://doi.org/10.1039/c1cs15237h
Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent
biomedical applications of gold nanoparticles: A
review. Talanta (Oxford), 184, 537–556.
https://doi.org/10.1016/j.talanta.2018.02.088
Ghosh, S. K., & Pal, T. (2007). Interparticle coupling
effect on the surface plasmon resonance of gold
nanoparticles: from theory to applications. Chemical
Reviews, 107(11), 4797–4862.
https://doi.org/10.1021/cr0680282
Guo, J., Rahme, K., He, Y. et al. (2017). Gold
nanoparticles enlighten the future of cancer
theranostics. International Journal of Nanomedicine,
12, 6131–6152. https://doi.org/10.2147/IJN.S140772
Jawad, S. M. H., Taha, A. et al. (2018). Synthesis and
characterization of small-sized gold nanoparticles
coated by bovine serum albumin (BSA) for cancer
photothermal therapy. Photodiagnosis and
Photodynamic Therapy, 21, 201–210.
https://doi.org/10.1016/j.pdpdt.2017.12.004
Jia, X., Xu, W. et al. (2020). Functionalized
Graphene@Gold Nanostar/Lipid for pancreatic cancer
gene and photothermal synergistic therapy under
Photoacoustic/Photothermal imaging Dual–Modal
guidance. Small (Weinheim an Der Bergstrasse,
Germany), 16(39), e2003707-n/a.
https://doi.org/10.1002/smll.202003707
Kong, F., Zhang, J., Li, R. et al. (2017). Unique roles of
gold nanoparticles in drug delivery, targeting and
imaging applications. Molecules (Basel, Switzerland),
22(9), 1445.
https://doi.org/10.3390/molecules22091445
Li, X., Zhou, J., Dong, X. et al. (2018). In vitro and in
vivo photothermal cancer therapeutic effects of gold
nanorods modified with mushroom β-Glucan. Journal
of Agricultural and Food Chemistry, 66(16), 4091–
4098. https://doi.org/10.1021/acs.jafc.8b00292
Li, Y., Wang, X., Yang, D. et al. (2019). Polydopamine-
coated gold nanostars for near-infrared cancer
photothermal therapy by multiple pathways. Journal of
Materials Science, 54(18), 12036–12048.
https://doi.org/10.1007/s10853-019-03774-4
Paraiso, W. K. D., Tanaka, H., Sato, Y. et al. (2017).
Preparation of envelope-type lipid nanoparticles
containing gold nanorods for photothermal cancer
therapy. Colloids and Surfaces, B, Biointerfaces, 160,
715–723.
https://doi.org/10.1016/j.colsurfb.2017.10.027
Petryayeva, E., & Krull, U. J. (2011). Localized surface
plasmon resonance: Nanostructures, bioassays and
biosensin—A review. Analytica Chimica Acta,
706(1), 8–24.
https://doi.org/10.1016/j.aca.2011.08.020
Qin, Z., Du, T., Zheng, Y. et al. (2019). Glutathione
induced transformation of partially hollow Gold-Silver
nanocages for cancer diagnosis and photothermal
therapy. Small (Weinheim an Der Bergstrasse,
Germany), 15(35), e1902755-n/a.
https://doi.org/10.1002/smll.201902755
Riley, R. S., & Day, E. S. (2017). Gold nanoparticle-
mediated photothermal therapy: Applications and
opportunities for multimodal cancer treatment. Wiley
Interdisciplinary Reviews. Nanomedicine and
Nanobiotechnology, 9(4), n/a.
https://doi.org/10.1002/wnan.1449
Singh, P., Pandit, S., Mokkapati, V. et al. (2018). Gold
nanoparticles in diagnostics and therapeutics for
human cancer. International Journal of Molecular
Sciences, 19(7), 1979.
https://doi.org/10.3390/ijms19071979
Sun, M., Duan, Y., Ma, Y. et al. (2020). Cancer cell-
erythrocyte hybrid membrane coated gold nanocages