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Abstract: This paper presents a general procedure for enabling autonomous row following in crops during early-stage 
growth, without relying on absolute localization systems. A model based on deep learning techniques (object 
detection for wide-row crops and segmentation for narrow-row crops) was applied to accurately detect both 
types of crops. Tests were performed using a manually operated mobile platform equipped with an RGB and 
a time-of-flight (ToF) cameras. Data were acquired during different time periods and weather conditions, in 
maize and wheat fields. The results showed the success on crop detection and enables the future development 
of a fully autonomous navigation system in cultivated fields during early stage of crop growth. 

1 INTRODUCTION 

Autonomous vehicles for agriculture have drawn the 
attention of farmers in recent decades and the activity 
for developing robust, safe and eco-friendly 
autonomous vehicles has increased significantly 
(Gonzalez-de-Santos et al., 2020). However, 
navigation is still a current challenge for autonomous 
robotic systems (Sarmento et al., 2021) because 
agricultural fields are unstructured, dynamic and 
diverse environments where weather conditions, 
luminosity, and stages of crop growth change 
continuously. 

Conventional localization and perception 
technologies, such as the Global Navigation Satellite 
System (GNSS), 2D and 3D LIDAR, and stereo 
cameras, have proven their usefulness in ensuring 
autonomous navigation in fields (Shalal et al., 2013). 
Although they rely heavily on user intervention to 
ensure accurate mapping and conditioning of the 
working environment, they are not able, by 
themselves, to develop a robust navigation system 
capable of ensuring full autonomy in these 
demanding environments. Precise mapping 
(including crop location), setting up the working area, 
luminosity variability, GNSS correction signal 
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failure, communications latency, and GNSS-denied 
zones are currently some of the major challenges in 
autonomous navigation. 

Weed management is one of the operations that 
has generated the most solutions in agriculture 
(Oliveira et al., 2021). Machine vision and GNSS-
based mapping have been the preferred technologies 
to distinguish weeds from crops and deliver precision 
treatment (Mavridou et al., 2019). Site-specific weed 
management techniques have gained considerable 
popularity in the last few years, particularly those 
based on high-power laser sources, which offer a 
more sustainable and eco-friendlier alternative than 
the other techniques (Rakhmatulin & Andreasen, 
2020). These technologies have been shown to be 
successful when weeds (and therefore crops) are in an 
early stage of growth. Crop row following has been a 
widely discussed topic in the literature (Bonadies & 
Gadsden, 2019). However, most of the studies and 
applications solve the problem when the crop is 
already in a mature growth stage or in crop types with 
an appropriate morphology for LIDAR-based 
methods, such as vineyards (Emmi et al., 2021). The 
early plant stage growth, together with the 
unevenness in ground height and the presence of 
weeds, make conventional perception systems unable 
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to identify the crop properly, thus preventing its 
further use for autonomous row guidance. 

This paper presents an approach for developing 
smart perception systems to enable autonomous 
robots to navigate in cultivated fields in an early stage 
of crop growth without relying on absolute 
localization systems, such as GNSS. 

2 RELATED WORK 

Autonomous navigation in crop field is mainly 
composed by following the crop lines, and at the end 
of each pass, making a U-turn to return to the field. 
The identification and following of crop rows are 
subjects that still attract considerable interest. Diverse 
strategies are found in the literature to solve these 
problems that follows a quite general procedure: (i) 
single crops or crop rows are detected; (ii) the crop row 
central point or the equation of the line is extracted; and 
(iii) the path to be followed by the mobile system is 
planned and executed. The techniques commonly used 
for identifying the crop rows are mainly based on a 
combination of binary segmentation, greenness 
identification (Woebbecke et al., 1995), morphological 
operations, Otsu’s method (Otsu, 1979), and edge 
detection techniques, such as the Hough transform 
(Hough, 1962). Many studies have made use of these 
techniques across different types of crops. For 
example, Jiang & Zhao, (2010) applied these 
techniques to identify the crop lines in a soybean field. 
Romeo et al., (2012) developed an algorithm based on 
green pixel accumulation for extracting crop lines in a 
maize field that outperformed the Hough 
transformation methods. 

To increase the accuracy and robustness of these 
techniques, Jiang et al., (2015) proposed a method 
based on least squares and multiple regions of interest 
(ROIs), where the data were split into horizontal 
strips. They compared their proposal with the 
standard Hough transform on soybean, wheat and 
maize crops. Following the same strategy, Zhang et 
al., (2018) applied a multi-ROI approach in a maize 
field. As a novelty, they employed double 
thresholding approach, using the Otsu method in 
combination with particle swarm optimization to 
improve the differentiate between weeds and crops. 
There are also several studies that combined the 
absolute navigation systems and computer vision 
techniques previously mentioned. For example, 
Bakker et al., (2011) employed an RTK-DGPS 
system to navigate in a sugar beet field, and 
Kanagasingham et al., (2020) proposed a combined 
navigation strategy for a rice field weeding robot. 

For vineyards and orchards in general, it is quite 
common to use LIDAR-based systems in 
combination with IMU data and odometers (Lan et 
al., 2018) or color cameras (Benet et al., 2017) for 
crop row following. The latest technological 
advances have made it possible to incorporate other 
technologies to obtain 3D information from the 
environment, as is the case with infrared-based 
cameras. Among these cameras, there is a growing 
interest in the time-of-flight (ToF) cameras, that 
provides a point cloud of the environment in a manner 
that is similar to the way that LIDAR does. Gai et al., 
(2021) used this type of camera for navigation under 
a canopy, where the GNSS signal may be denied. 
Currently, as the above work stated, ToF cameras are 
beginning to be used with great interest in outdoor 
environments due to improvements in their light 
sensors and wider vertical field-of-view (FoV) 
capability than what is available with LIDAR sensors. 

There are many research studies that use classical 
techniques for in-field navigation, but these 
techniques usually need to adjust certain system 
parameters for navigating in new environments and 
situations, which limits their generalizability. In 
addition, for methods based on green detection, the 
presence of weeds may be a major problem. 

In recent years, techniques based on artificial 
intelligence (AI) have gained much interest. Two 
different techniques can be distinguished: (i) object 
detection, which uses bounding boxes to identify the 
classes, and (ii) segmentation, which is based on pixel 
classification. Their selection depends on the type of 
crop to be identified: (i) wide row crops (maize, sugar 
beet) where the object detection is preferred and (ii) 
narrow row crops (wheat, rice) where segmentation-
based classification is more suitable. Normally, 
artificial intelligence-based techniques are used to 
identify the crop, and then, some combination of the 
aforementioned techniques, such as the Hough 
transform or RANSAC (Fischler & Bolles, 1981), are 
used to extract the crop lines. Ponnambalam et al., 
(2020) used a SegNet (Badrinarayanan et al., 2017) 
with ResNet50 (He et al., 2015) convolution neural 
network (CNN) in combination with a multi-ROI 
strategy to segment and extract the row crops in 
strawberry fields. Simon & Min, (2020) compared the 
results of a method based on a neural network with 
the classical method based on the Hough transform in 
a maize field. The deep learning method obtained 
higher accuracy and more robustness. Emmi et al., 
(2021) used a YOLOv3 (Redmon & Farhadi, 2018) 
network for object detection in broccoli, cabbage and 
vineyard trunks. de Silva et al., (2021) tested the 
performance of a deep learning model based on U-
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Net (Ronneberger et al., 2015) in a sugar beet field 
under different scenarios, such as shadows, presence 
of weeds, gaps in the crop row, intense sunlight 
conditions, and different stages of crop growth. There 
is also a special interest in AI on the edge, i.e., on 
users' devices. For this purpose, MobileNet (Howard 
et al., 2017) networks are the most suitable due to 
their efficiency and speed, with the counterpart 
having generally poorer accuracy. 

In the search for new alternatives to weed 
management, strategies based on high-power lasers 
have emerged. This type of solution has been shown 
to be subtle when plants are small (Rakhmatulin & 
Andreasen, 2020). These types of strategies have 
given way to alternatives for row following, where 
the abovementioned examples may not achieve 
accurate results and the robustness of the models may 
be inadequate. To generalize the problem, it is 
necessary define what an early-stage crop is. There 
are different nomenclatures to define the different 
growth stages of different crops, but these definitions 
are normally specific to each type of crop. For the 
sake of this development, maize and wheat are 
selected as examples of crops sown in wide rows and 
narrow rows, respectively, which coincide with this 
case study. The growth stage in maize will be 
identified using the classification made by (Zhao et 
al., 2012), while the classification made by (Zadoks 
et al., 1974) will be used for wheat.  In this paper, 
early growth stage crops will be considered as those 
from the moment the perception system is able to 
detect them until the moment of growth when the 
weeding system based on high-power laser sources is 
no longer efficient for the elimination of weeds, 
assuming that crops and weeds grow at the same rate. 
This stage corresponds to approximately the V2 stage 
for maize (Zhao et al., 2012) and approximately the 
12-seedling stage for wheat (Zadoks et al., 1974). 

The literature on autonomous navigation in the 
early growth stage crops is rather scarce, although 
there are some significant studies. For maize, Wei et 
al., (2022) built what they defined as the dataset row 
anchor selection classification method (RASCM) for 
tracking crop rows. García-Santillán et al., (2018) 
developed a method for extracting curved and straight 
crop rows based on greenness identification, double 
thresholding and morphological operations that was 
also tested in what one can consider early-stage maize 
crops. Winterhalter et al., (2018), assuming that crop 
rows are parallel and equidistant, proposed a method 
based on an adaptation of the Hough transform that 
was able to detect crop rows in early-stage sugar beet 
crops. Finally, Ahmadi et al., (2021) developed a 
method based on greenness identification and Otsu’s 

method for multicrop row detection relying only on 
on-board cameras. This proposal was tested in early-
stage sugar beet. 

Therefore, this paper presents a strategy that 
integrates several of the technologies mentioned 
above, such as artificial intelligence for crop 
detection, in conjunction with emerging perception 
systems such as ToF cameras, to obtain a highly 
accurate depth map and locate the detected crop with 
respect to the mobile platform. The present work aims 
to pave the way for the development of a system able 
to autonomously navigate in cultivated fields in an 
early stage of crop growth in a robust and efficient 
way, with the capability to scale the system to 
incorporate new crops or to be able to operate in 
unforeseen environments. 

 
Figure 1: Diagram of the presented methodology. 

3 MATERIALS AND METHODS 

Figure 1 presents a general procedure for enabling 
autonomous navigation in crops in an early growth 
stage. First, data are acquired by the perception 
systems, which consist of RGB and ToF cameras. 
Then, depending on the type of crop, a different 
approach is followed. For wide-row crops, object 
detection is used, and for narrow-row crops, 
segmentation is applied to identify the crops in the 
RGB images, making use, in both cases, of deep 
learning models. Once a crop is identified, a match 
between the ToF point cloud and the output of the 
respective deep learning model is made, obtaining the 
relative distance between the detected crops and the 
autonomous vehicle. Next, a filtering process is 
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utilized to remove the outliers and the noise of the 
matched point cloud, mostly produced by the 
sunlight. Next, RANSAC is applied to obtain the 
ground plane, the background points are removed, 
and the points that correspond to the crops are 
projected onto the plane. Later, a clustering algorithm 
based on DBSCAN (Ester et al., 1996), using the 
present and past points, is employed to obtain the crop 
rows. Finally, the RANSAC algorithm is again 
applied to compute the directions of each cluster, and 
the final path that the mobile platform must follow is 
calculated.  

For crop identification, depending on the type of 
crop, a different deep learning architecture was used. 
In the case of maize, the YOLOv4 (Bochkovskiy et 
al., 2020) model was employed to detect the plants. 
For wheat, several combinations between the 
segmentation models PSPNet (Zhao et al., 2017), U-
Net (Ronneberger et al., 2015), and SegNet 
(Badrinarayanan et al., 2017) and the base models 
ResNet50 (He et al., 2015), VGG16, MobileNet 
(Howard et al., 2017) and CNN were tested (see Table 
1). Their performance characteristics and 
comparisons of the results of the different models will 
be discussed in the results section. 

Table 1: Segmentation models. 

 Base Model Segmentation Model 
1 CNN PSPNet 
2 VGG16 PSPNet 
3 ResNet50 PSPNet 
4 CNN U-Net 
5 VGG16 U-Net 
6 ResNet50 U-Net 
7 MobileNet U-Net 
8 CNN SegNet 
9 VGG16 SegNet 
10 ResNet50 SegNet 
11 MobileNet SegNet 

 
Figure 2: Example of the maize experimental fields. 

 
Figure 3: Example of the wheat experimental fields. 

The presented methodology was validated under 
the European project named Sustainable Weed 
Management in Agriculture with Laser-Based 
Autonomous Tools (WeLASER). The WeLASER 
project is a consortium of ten partners from Spain, 
Germany, Denmark, France, Poland, Belgium, Italy 
and the Netherlands. WeLASER aims to develop 
precision weeding equipment based on applying 
lethal doses of energy to weed meristems using a 
high-power laser source with the main objective of 
eliminating the use of herbicides while improving 
productivity. The prototype consists of an 
autonomous robot with an artificial intelligent vision 
system that will differentiate between weeds and 
crops. It will then detect the meristems of the weeds 
and apply the laser to kill the plants. All the systems 
will be coordinated by a smart controller based on the 
Internet of Things (IoT) and cloud computing 
techniques. The target crops will be wheat, maize, and 
sugar beet (WeLASER, 2022). 

 
Figure 4: CAROB robotic platform and perception system. 

RGB

ToF
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To validate the presented algorithm, data were 
acquired in experimental fields of maize (see Fig. 2) 
and wheat (see Fig. 3). The dimensions of each field 
were 20 m × 60 m.  

The CAROB robotic platform that was developed 
by AgreenCulture (2022) was used for data 
acquisition, where the perception system was 
installed (see Fig. 4). The perception system consisted 
of an RGB camera TRI016S-CC RGB equipped with 
the SV-0614V lens (resolution: 1.6 MP; FoV: 54.6° × 
42.3°), and a ToF camera HLT003S-001 (resolution: 
0.3 MP; FoV: 69° × 51°), of which both were 
acquired from Lucid Vision Labs (2022). 

The data were acquired by manually operating the 
mobile platform during different time periods and 
weather conditions in the same season. To build the 
maize and wheat datasets 450 and 125 images were 
labeled, respectively, using data augmentation 
techniques, such as rotating, image cropping, blurring 
and brightness changes, among others, were used to 
increase the size of the dataset. In both cases, 80% of 
the data was destined for the training group, 10% for 
the validation group and 10% for the test group. Part 
of the dataset used in this work has been published in 
an open-access repository, for both maize 
(https://doi.org/10.20350/digitalCSIC/14566) and 
wheat (https://doi.org/10.20350/digitalCSIC/14567). 
As shown in Fig. 5, depending on how the labeling 
process is performed, this can lead to misleading 
errors. In the dataset images, the crops that are located 
in more distant regions or that are not clearly 
recognizable have not been labeled. Consequently, 
when the model was validated, in these regions false-
positives were detected, although they were unlabeled 
crops, but because they had not been previously 
labeled, the model would consider them as false 
positives, decreasing the real performance of the 
model. An alternative to mitigate this common 
problem, ignoring masks, was used by specifying that 
the model not consider these parts of the images 
where the differences between crops and the 
background may be ambiguous. 

 
Figure 5: Example of a labeled wheat image. 

The segmentation models were implemented with 
Keras (https://github.com/fchollet/keras) using 
TensorFlow (Abadi et al., 2016) as the backend 
software tool, while the YOLOv4 model used 
Darknet (Redmon, 2013) version. The training 
process was performed on a Quadro RTX 6000 
graphics card with 24 GB GDDR6 of RAM memory, 
while the inference process was evaluated using 
GeForce GTX 1650. 

Table 2: Performance of the segmentation models. 

Model IoU 
Training time 
[s] per epoch  

MobileNet SegNet 0.6815 124 
MobileNet U-Net 0.7347 124 
ResNet50 PSPNet 0.7370 180 
ResNet50 SegNet 0.7578 164 
ResNet50 U-Net 0.7406 183 
VGG16 PSPNet 0.7343 227 
VGG16 SegNet 0.7461 196 
VGG16 U-Net 0.6982 208 
CNN PSPNet 0.7321 171 
CNN SegNet 0.7364 156 
CNN U-Net 0.7339 155 

4 RESULTS 

To assess the overall performance of the presented 
methodology, it is first necessary to evaluate the crop 
identification models. For the wheat crop, the 
different models listed in Table 1 have been 
compared. All models were trained for the same 
initial number of epochs, although an early stopping 
technique based on validation loss was applied to 
avoid overfitting. The comparison between the 
different segmentation models is summarized in 
Table 2. As the dataset was imbalanced, the metric 
chosen to evaluate the performance of the models was 
a frequency weighted intersection over union (IoU) 
determination. The model with the best performance 
was ResNet50-SegNet. However, in these types of 
applications in which the models are going to be used 
in real time, apart from evaluating the performance of 
the model, it is necessary to consider their inference 
time. In this case, the differences between the 
inference times of the considered models were not 
notable, taking as a basis that, in general, the 
inference time is smaller than the training time. 
Hence, the final model that has been selected was the 
aforementioned model. As expected, models based on 
MobileNet are considerably faster, but at the cost of a 
generally poorer performance. 
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An example of the typical training curves is 
presented in Fig. 6, for the training with the 
ResNet50-SegNet network, where the loss curves for 
both training (train_loss) and validation (val_loss) are 
presented. 

 
Figure 6: Example of training curves. Y-axis normalized to 
compare loss curves and precision curves. 

It can be seen in these curves that the network has 
not been overfitted, the validation samples are 
representative. Moreover, it can be seen that a point 
is reached from which the training loss continues to 
decrease, although the validation loss remains the 
same. Furthermore, Fig. 6 presents also the accuracy 
curves for both train (train_acc) and validation 
(val_acc) which shows a proper fit of the model. 

On the other hand, regarding object detection in 
maize, a YOLOv4 model was selected for crop 
identification. Average precision (AP) was the metric 
chosen to assess the performance of the model, and 
its values for IoU thresholds of 0.25, 0.5, and 0.75 
were 0.9168, 0.8478 and 0.1496, respectively. In 
addition, the precision and recall metrics have been 
calculated for different thresholds, and the 
comparative curves are presented in Fig. 7. 

 
Figure 7: Recall, precision and F1-score for different 
threshold values. Y-axis normalized. 

The threshold is be chosen depending on whether 
the recall or precision is desired to be higher, i.e. 
whether a higher number of false positives (FP) or 
false negatives (FN) is preferred. A trade-off between 
precision and recall is selected based on the F1-score, 
which is maximal for threshold values of 
approximately 0.6. 

 

Figure 8: Output of the object detection model (maize). 

In both cases, the models are capable of properly 
detecting the crops (see Fig. 8 and Fig. 9), thus 
enabling crop line extraction. It is worth mentioning 
that for autonomous navigation, the detection of all 
crops in a single image is not an essential 
requirement, given that strategies such as point 
accumulation or particle filters can be applied to 
reconstruct the crop line by taking information from 
various epochs. In the absence of ground truth of the 
row crops, a quantitative evaluation of the error 
obtained by the process of crop line extraction is not 
feasible. 

 

Figure 9: Output of the segmentation model (wheat). 

One could consider that the error will be similar 
to the error obtained by other studies that have used a 
similar procedure for line extraction, such as the work 
presented by Emmi et al., (2021). Although the error 
cannot be quantified (because at the time of the tests 
the position of each crop was not available), it can be 
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clearly established that the presented methodology is 
able to identify the crop lines properly (see Fig. 10).  

 

Figure 10: Clustering and lines extraction (maize). 

Figure 10 presents the result of the application of 
the methodology presented in Fig. 1, and by using a 
line extraction such as RANSAC, it is possible to 
extract the crop lines for the maize field, where the 
position and direction of the mobile platform are 
represented in black color in a cartesian coordinate 
frame. Finally, the results have shown the 
effectiveness of the presented methodology for 
autonomous navigation in early-stage crop growth. 

5 CONCLUSIONS 

A general procedure for crop-row identification in 
early-stage growth has been presented. This 
methodology seeks not to depend on global 
localization systems, which will enable robust 
autonomous row following in both wide-row crops and 
narrow-row crops. The methodology is based on crop 
identification using state-of-the-art deep learning 
models, validated in maize and wheat at an early 
growth stage, although the methodology can be 
extended to many more crops. This approach 
demonstrates that it is possible to integrate in a single 
methodology the identification and classification of 
diverse wide-row and narrow-row crops to estimate the 
row lines for later navigation while eliminating the 
outliers. The presented method has been validated 
using offline data gathered by a robotic platform during 
different real working conditions. The results show the 
robustness and effectiveness of the methodology in 
identifying the crops, and later obtaining the 
characterization of the crop lines, even considering 
their early stage of growth. The presented approach 
will enable the future development of a fully 

autonomous navigation system for weed management 
using high-power laser technology. Future work will 
aim to expand the identification capacity for other 
crops, such as sugar beet, which is one of the target 
crops of the WeLASER project, as well as to validate 
the presented methodology in real time. 
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