5 CONCLUSION
The present study developed linguistic feature- based
emotion detection (anger and anticipation) using
machine learning algorithms. Experiments conducted
using YouTube comments gathered during the initial
phase of Covid-19 lockdown in the country revealed
the role of POS features specific to anger and
anticipation prediction. Combinations of nouns and
adjectives improved the performance of RF for anger
prediction whereas verbs improved RF performance
for anticipation prediction. Overall, SVM + Unigram,
vectorized with TF-IDF yielded the best results in
predicting both anger and anticipation.
REFERENCES
Abdullah, M. F. I. L. B., Yusof, H. A., Shariff, N.
M., Hami, R., Nisman, N. F., & Law, K. S. (2021).
Depression and anxiety in the Malaysian urban
population and their association with demographic
characteristics, quality of life, and the emergence of the
COVID-19 pandemic. Current Psychology, 1-12.
Al Amrani, Y., Lazaar, M., & El Kadiri, K. E. (2018).
Random forest and support vector machine based
hybrid approach to sentiment analysis. Procedia
Computer Science, 127, 511-520.
Aljameel, S. S., Alabbad, D. A., Alzahrani, N. A., Alqarni,
S. M., Alamoudi, F. A., Babili, L. M., Aljaafary, S. K.,
& Alshamrani, F. M. (2021). A Sentiment Analysis
Approach to Predict an Individual’s Awareness of the
Precautionary Procedures to Prevent COVID-19
Outbreaks in Saudi Arabia. International Journal of
Environmental Research and Public Health 18(1), 218.
https://www.mdpi.com/1660- 4601/18/1/218
Awan, M. N., & Beg, M. O. (2021). Top-rank: a
topicalpostionrank for extraction and classification of
keyphrases in text. Computer Speech & Language, 65,
101116.
Azak, M., Şahin, K., Korkmaz, N., & Yıldız, S. (2021).
YouTube as a source of information about COVID-19
for children: Content quality, reliability, and audience
participation analysis. Journal of Pediatric Nursing.
Babu, M. M. Y., Reddy, P. V. P., & Bindu, C. S. (2020).
Aspect Category Polarity Detection Using Multi Class
Support Vector Machine With Lexicons Based Features
And Vector Based Features. situations, 7(11), 2020.
Bahassine, S., Madani, A., & Kissi, M. (2016). An
improved Chi-sqaure feature selection for Arabic text
classification using decision tree. In 11th International
Conference on Intelligent Systems: Theories and
Applications (SITA), 1-5.
Balakrishnan, V., Kaity, M., Rahim, H. A., & Ismail,
N. (2021). Social Media Analytics Using Sentiment
And Content Analyses On The 2018 Malaysia’s
General Election. Malaysian Journal of Computer
Science, 34(2), 171-183.
Balakrishnan, V., & Kaur, W. (2019). String-based
multinomial Naïve Bayes for emotion detection among
Facebook diabetes community. Procedia Computer
Science, 159, 30-37.
Barnard, A. S., & Opletal, G. (2020). Selecting Machine
Learning Models for Metallic Nanoparticles. Nano
Futures, 4(3), 035003.
Chau, M., Li, T. M., Wong, P. W., Xu, J. J., Yip, P. S., &
Chen, H. (2020). Finding People with Emotional
Distress in Online Social Media: A Design Combining
Machine Learning and Rule-Based Classification. MIS
Quarterly, 44(2).
Chen, Q., Min, C., Zhang, W., Wang, G., Ma, X., & Evans,
R. (2020). Unpacking the black box: How to promote
citizen engagement through government social media
during the COVID-19 crisis. Computers in Human
Behavior, 110, 106380.
Derczynski, L., Llorens, H., & Saquete, E. (2012).
Massively increasing TIMEX3 resources: a
transduction approach. arXiv preprint
arXiv:1203.5076.
Fidyati, L., & Rajandran, K. (2020). Representing The
Incumbent and The Contender in The 2019 Indonesian
Presidential Debates. Journal of Nusantara Studies
(JONUS), 5(2), 215-238.
Ganasegeran, K., Ch’ng, A. S. H., & Looi, I. (2020).
COVID-19 in Malaysia: Crucial measures in critical
times. Journal of Global Health, 10(2).
Gopalakrishnan, N., Krishnan, V., & Gopalakrishnan, V.
(2020). Ensemble feature selection to improve
classification accuracy in human activity recognition.
In Inventive Communication and Computational
Technologies (pp. 541-548). Springer.
Hodzik, E. (2013). Anticipation during simultaneous
interpreting from German into English: An
experimental approach. Quality in Interpreting:
Widening the Scope, 87.
Jung, Y., Park, K., Lee, T., Chae, J., & Jung, S. (2017,
2017/03/01). A corpus-based approach to classifying
emotions using Korean linguistic features. Cluster
Computing, 20(1), 583-595. https://doi.org/10.1007/
s10586-017-0777-8
Kaity, M., & Balakrishnan, V. (2020). Sentiment lexicons
and non-English languages: a survey. Knowledge and
Information Systems, 1-36.
Kassim, M. A. M., Pang, N. T. P., Mohamed, N. H.,Kamu,
A., Ho, C. M., Ayu, F., Rahim, S. A., Omar, A., &
Jeffree, M. S. (2021, 2021/01/07). Relationship
Between Fear of COVID-19, Psychopathology and
Sociodemographic Variables in Malaysian Population.
International Journal of Mental Health and Addiction.
https://doi.org/10.1007/s11469-020-0044-4
Kaur, R. (2021). Naive Bayes: A text classifier based on
machine learning. International Journal of Research
Publication and Reviews, 2, 260-266.
Kieuvongngam, V., Tan, B., & Niu, Y. (2020). Automatic
text summarization of covid-19 medical research
articles using bert and gpt-2. arXiv preprint