0
10
20
30
Failed Utterances Matched Utterances Logical Utterances
Fine-tuned pre-trained model with translated Daily Dialogue
Number of Ratings Given
Rating Given
1
2
3
4
5
6
7
8
9
10
0 100 200 300 400
Machine Translation Human Rating
Number of Ratings Given
Rating Given
1
2
3
4
5
6
7
8
9
10
0 2 4 6 8 10 12
Chatbot Human Rating
Figure 5: Lef side plot shows the fine-tuned pre-trained model with translated Daily Dialogue. Middle plot shows the Human
Evaluation of the Machine Translation. Right side plot shows the Human Evaluation to the System
ACKNOWLEDGEMENTS
This publication has been partially funded by the
project LARSyS - FCT Project UIDB/50009/2020
and the project and by the project IntelligentCare –
Intelligent Multimorbidity Managment System (Ref-
erence LISBOA-01-0247-FEDER-045948), which is
co-financed by the ERDF – European Regional De-
velpment Fund through the Lisbon Portugal Regional
Operational Program – LISBOA 2020 and by the Por-
tuguese Foundation for Science and Technology –
FCT under CMU Portugal.
REFERENCES
Adiwardana, D. and Luong, T. (2020). Towards a conversa-
tional agent that can chat about. . . anything. Google
AI Blog.
Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural ma-
chine translation by jointly learning to align and trans-
late. arXiv preprint arXiv:1409.0473.
Dahiya, M. (2017). A tool of conversation: Chatbot. Inter-
national Journal of Computer Sciences and Engineer-
ing, 5(5):158–161.
Firat, O., Cho, K., Sankaran, B., Vural, F. T. Y., and Bengio,
Y. (2017). Multi-way, multilingual neural machine
translation. Computer Speech & Language, 45:236–
252.
Gao, X., Zhang, Y., Galley, M., Brockett, C., and Dolan,
B. (2020). Dialogue response ranking training with
large-scale human feedback data. arXiv preprint
arXiv:2009.06978.
Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., and
Feris, R. (2019). Spottune: transfer learning through
adaptive fine-tuning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 4805–4814.
Hirschberg, J. and Manning, C. D. (2015). Advances in
natural language processing. Science, 349(6245):261–
266.
Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
(2019). The curious case of neural text degeneration.
arXiv preprint arXiv:1904.09751.
Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T.,
Hoang, H., Heafield, K., Neckermann, T., Seide, F.,
Germann, U., Aji, A. F., Bogoychev, N., et al. (2018).
Marian: Fast neural machine translation in c++. arXiv
preprint arXiv:1804.00344.
Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi,
R., Kaiser, L., and Shazeer, N. (2018). Generat-
ing wikipedia by summarizing long sequences. arXiv
preprint arXiv:1801.10198.
Malte, A. and Ratadiya, P. (2019). Evolution of trans-
fer learning in natural language processing. arXiv
preprint arXiv:1910.07370.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019). Language models are unsuper-
vised multitask learners. OpenAI blog, 1(8):9.
Ranathunga, S., Lee, E.-S. A., Skenduli, M. P., Shekhar, R.,
Alam, M., and Kaur, R. (2021). Neural machine trans-
lation for low-resource languages: A survey. arXiv
preprint arXiv:2106.15115.
Ruder, S. (2020). Why You Should Do NLP Beyond En-
glish. http://ruder.io/nlp-beyond-english.
Silva, C. (2020). Natural Language Processing: My
”grandchild-Bot”.
Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T.,
Kendall, C. B., Gotway, M. B., and Liang, J. (2016).
Convolutional neural networks for medical image
analysis: Full training or fine tuning? IEEE trans-
actions on medical imaging, 35(5):1299–1312.
Tiedemann, J. and Thottingal, S. (2020). Opus-mt–building
open translation services for the world. In Proceed-
ings of the 22nd Annual Conference of the European
Association for Machine Translation, pages 479–480.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. In Advances in
neural information processing systems, pages 5998–
6008.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., et al. (2019). Huggingface’s transformers: State-
of-the-art natural language processing. arXiv preprint
arXiv:1910.03771.
Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brock-
ett, C., Gao, X., Gao, J., Liu, J., and Dolan, B.
(2019). Dialogpt: Large-scale generative pre-training
for conversational response generation. arXiv preprint
arXiv:1911.00536.
Open-domain Conversational Agent based on Pre-trained Transformers for Human-Robot Interaction
175