Byna, S., Chen, Y., and Sun, X.-H. (2008). A taxonomy of
data prefetching mechanisms. In 2008 International
Symposium on Parallel Architectures, Algorithms, and
Networks (i-span 2008), pages 19–24. IEEE.
”ChampSim” (2017). https://github.com/champsim/champsim.
Chen, M. and Liu, P. (2017). Performance evaluation of
recommender systems. International Journal of Per-
formability Engineering, 13(8):1246.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. (2020). An image is
worth 16x16 words: Transformers for image recogni-
tion at scale. arXiv preprint arXiv:2010.11929.
Drosou, A., Kalamaras, I., Papadopoulos, S., and Tzovaras,
D. (2016). An enhanced graph analytics platform
(gap) providing insight in big network data. Journal
of Innovation in Digital Ecosystems, 3(2):83–97.
Greff, K., Srivastava, R. K., Koutn
´
ık, J., Steunebrink, B. R.,
and Schmidhuber, J. (2016). Lstm: A search space
odyssey. IEEE transactions on neural networks and
learning systems, 28(10):2222–2232.
Grossman, S., Litz, H., and Kozyrakis, C. (2018). Making
pull-based graph processing performant. In Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages
246–260. ACM.
Han, M. and Daudjee, K. (2015). Giraph unchained: bar-
rierless asynchronous parallel execution in pregel-like
graph processing systems. Proceedings of the VLDB
Endowment, 8(9):950–961.
Hashemi, M., Swersky, K., Smith, J. A., Ayers, G., Litz,
H., Chang, J., Kozyrakis, C., and Ranganathan, P.
(2018a). Learning memory access patterns. arXiv
preprint arXiv:1803.02329.
Hashemi, M., Swersky, K., Smith, J. A., Ayers, G., Litz,
H., Chang, J., Kozyrakis, C., and Ranganathan, P.
(2018b). Learning memory access patterns. CoRR,
abs/1803.02329.
Jain, A. and Lin, C. (2013). Linearizing irregular memory
accesses for improved correlated prefetching. In Pro-
ceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 247–259.
Kim, J., Pugsley, S. H., Gratz, P. V., Reddy, A. N., Wilk-
erson, C., and Chishti, Z. (2016). Path confidence
based lookahead prefetching. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 1–12. IEEE.
Kumar, S. and Wilkerson, C. (1998). Exploiting spatial lo-
cality in data caches using spatial footprints. In Pro-
ceedings. 25th Annual International Symposium on
Computer Architecture (Cat. No. 98CB36235), pages
357–368. IEEE.
Lakhotia, K., Kannan, R., Pati, S., and Prasanna, V. (2020).
Gpop: A scalable cache-and memory-efficient frame-
work for graph processing over parts. ACM Transac-
tions on Parallel Computing (TOPC), 7(1):1–24.
Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A.,
and Hellerstein, J. M. (2012). Distributed graphlab:
a framework for machine learning and data mining
in the cloud. Proceedings of the VLDB Endowment,
5(8):716–727.
Lumsdaine, A., Gregor, D., Hendrickson, B., and Berry, J.
(2007). Challenges in parallel graph processing. Par-
allel Processing Letters, 17(01):5–20.
Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C.,
Horn, I., Leiser, N., and Czajkowski, G. (2010).
Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 135–146.
ACM.
McSherry, F., Isard, M., and Murray, D. G. (2015). Scal-
ability! but at what cost? In Proceedings of the
15th USENIX Conference on Hot Topics in Operating
Systems, HOTOS’15, pages 14–14. USENIX Associ-
ation.
Michaud, P. (2016). Best-offset hardware prefetching. In
2016 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 469–
480. IEEE.
Nguyen, D., Lenharth, A., and Pingali, K. (2013). A
lightweight infrastructure for graph analytics. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 456–471. ACM.
Page, L., Brin, S., Motwani, R., and Winograd, T. (1999).
The pagerank citation ranking: Bringing order to the
web. Technical report, Stanford InfoLab.
Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Has-
saan, M. A., Kaleem, R., Lee, T.-H., Lenharth, A.,
Manevich, R., M
´
endez-Lojo, M., et al. (2011). The
tao of parallelism in algorithms. In ACM Sigplan No-
tices, volume 46, pages 12–25. ACM.
Roy, A., Mihailovic, I., and Zwaenepoel, W. (2013). X-
stream: Edge-centric graph processing using stream-
ing partitions. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
pages 472–488. ACM.
Shevgoor, M., Koladiya, S., Balasubramonian, R., Wilker-
son, C., Pugsley, S. H., and Chishti, Z. (2015). Effi-
ciently prefetching complex address patterns. In 2015
48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 141–152. IEEE.
Shun, J. and Blelloch, G. E. (2013). Ligra: a lightweight
graph processing framework for shared memory. In
ACM Sigplan Notices, volume 48, pages 135–146.
ACM.
Siek, J., Lumsdaine, A., and Lee, L.-Q. (2002). The
boost graph library: user guide and reference man-
ual. Addison-Wesley.
Silveira, T., Zhang, M., Lin, X., Liu, Y., and Ma, S. (2019).
How good your recommender system is? a survey on
evaluations in recommendation. International Jour-
nal of Machine Learning and Cybernetics, 10(5):813–
831.
Srivastava, A., Lazaris, A., Brooks, B., Kannan, R., and
Prasanna, V. K. (2019). Predicting memory accesses:
the road to compact ml-driven prefetcher. In Proceed-
ings of the International Symposium on Memory Sys-
tems, pages 461–470.
DATA 2022 - 11th International Conference on Data Science, Technology and Applications
144