the Discovery Grants (RGPIN-2018-03872) from the
Natural Sciences and Engineering Research Coun-
cil of Canada, and Canada Research Chairs Program
(950-232791).
REFERENCES
Abusitta, A., Li, M. Q., and Fung, B. C. M. (2021). Malware
classification and composition analysis: A survey of
recent developments. Journal of Information Security
and Applications (JISA), 59(102828):1–17.
Anderson, B., Quist, D., Neil, J., Storlie, C., and Lane,
T. (2011). Graph-based malware detection using
dynamic analysis. Journal in computer Virology,
7(4):247–258.
Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot,
A., Tabik, S., Barbado, A., García, S., Gil-López, S.,
Molina, D., Benjamins, R., et al. (2020). Explainable
artificial intelligence (xai): Concepts, taxonomies, op-
portunities and challenges toward responsible ai. In-
formation Fusion, 58:82–115.
Baldangombo, U., Jambaljav, N., and Horng, S.-J. (2013).
A static malware detection system using data mining
methods. arXiv preprint arXiv:1308.2831.
Bayer, U., Moser, A., Kruegel, C., and Kirda, E. (2006).
Dynamic analysis of malicious code. Journal in Com-
puter Virology, 2(1):67–77.
Charikar, M. S. (2002). Similarity estimation techniques
from rounding algorithms. In Proceedings of the 34th
annual ACM Symposium on Theory of Computing,
pages 380–388.
Dahl, G. E., Stokes, J. W., Deng, L., and Yu, D. (2013).
Large-scale malware classification using random pro-
jections and neural networks. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on, pages 3422–3426. IEEE.
Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., and
Yan, X. (2010). Synthesizing near-optimal malware
specifications from suspicious behaviors. In Security
and Privacy (SP), 2010 IEEE Symposium on, pages
45–60. IEEE.
Huang, W. and Stokes, J. W. (2016). Mtnet: a multi-task
neural network for dynamic malware classification. In
Proceedings of the International Conference on De-
tection of Intrusions and Malware, and Vulnerability
Assessment, pages 399–418. Springer.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Li, M. Q., Fung, B. C., Charland, P., and Ding, S. H.
(2021a). I-mad: Interpretable malware detector
using galaxy transformer. Computers & Security,
108:102371.
Li, M. Q. and Fung, B. C. M. (2022). Software Technolo-
gies, chapter A novel neural network-based malware
severity classification system. Communications in
Computer and Information Science (CCIS). Springer.
Li, M. Q., Fung, B. C. M., and Abusitta, A. (2022). On the
effectiveness of interpretable feedforward neural net-
work. In Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN), Padova, Italy.
IEEE.
Li, M. Q., Fung, B. C. M., Charland, P., and Ding, S. H. H.
(2021b). A novel and dedicated machine learning
model for malware classification. In Proceedings of
the 16th International Conference on Software Tech-
nologies, pages 617–628.
Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitel-
man, M., Dolev, S., and Elovici, Y. (2008). Unknown
malcode detection using opcode representation. In
Proceedings of the IEEE International Conference on
Intelligence and Security Informatics, pages 204–215.
Springer.
Mourtaji, Y., Bouhorma, M., and Alghazzawi, D. (2019).
Intelligent framework for malware detection with con-
volutional neural network. In Proceedings of the 2nd
International Conference on Networking, Information
Systems & Security, pages 1–6.
Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B.
(2011). Malware images: visualization and automatic
classification. In Proceedings of the 8th international
symposium on visualization for cyber security, page 4.
ACM.
Rai, A. (2020). Explainable ai: From black box to glass
box. Journal of the Academy of Marketing Science,
48(1):137–141.
Royal, P., Halpin, M., Dagon, D., Edmonds, R., and Lee,
W. (2006). Polyunpack: Automating the hidden-code
extraction of unpack-executing malware. In Computer
Security Applications Conference, 2006. ACSAC’06.
22nd Annual, pages 289–300. IEEE.
Saxe, J. and Berlin, K. (2015). Deep neural network based
malware detection using two dimensional binary pro-
gram features. In Proceedings of the 10th Interna-
tional Conference on Malicious and Unwanted Soft-
ware (MALWARE), pages 11–20. IEEE.
Schultz, M. G., Eskin, E., Zadok, F., and Stolfo, S. J. (2001).
Data mining methods for detection of new malicious
executables. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), pages 38–49. IEEE.
Sebastián, M., Rivera, R., Kotzias, P., and Caballero, J.
(2016). Avclass: A tool for massive malware labeling.
In Proceedings of the International Symposium on Re-
search in Attacks, Intrusions, and Defenses, pages
230–253. Springer.
Ye, Y., Li, T., Adjeroh, D., and Iyengar, S. S. (2017). A
survey on malware detection using data mining tech-
niques. ACM Computing Surveys (CSUR), 50(3):41.
Interpretable Malware Classification based on Functional Analysis
507