Subsequently,  the  FIS  system  enables  individual 
forms (e.g. ripples) recognition. These issues will be 
further investigated by the authors of this paper. 
ACKNOWLEDGEMENTS 
Funding: The work was funded by the Anthropocene 
Priority  Research  Area  budget  under  the  program 
"Excellence Initiative –  Research  University"  at  the 
Jagiellonian University and by POB Research Centre 
Cybersecurity  and  Data  Science  of  Warsaw 
University  of  Technology  within  the  Excellence 
Initiative Program - Research University (ID-UB). 
REFERENCES 
Moore,  R.,  Lopes,  J.  (1999).  Paper  templates.  In 
TEMPLATE’06, 1st International Conference on 
Template Production. SCITEPRESS. 
Smith,  J.  (1998).  The book,  The  publishing  company. 
London, 2
nd
 edition. 
Manna,  A.,  Kundu,  R.,  Kaplun,  D.  et  al.  (2021).  A fuzzy 
rank-based ensemble of CNN models for classification 
of cervical cytology. Sci Rep 11, 14538  
Zhou,  J.,  Tian  P.,  Chu  Z.,  and  Na  S.  (2018).  Data Pre-
Analysis and Ensemble of Various Artificial Neural 
Networks for Monthly Streamflow Forecasting. Water 
10, no. 5: 628.  
Han  S.,  Jeong  J.,  (2020).  An Weighted CNN Ensemble 
Model with Small Amount of Data for Bearing Fault 
Diagnosis. Procedia Computer Science, V. 175 
K.  Simonyan,  A.  Zisserman,  (2015).  Very deep 
convolutional networks for large-scale image 
recognition. 3rd International Conference on Learning 
Representations,  ICLR  2015—Conference  Track 
Proceedings, pp. 1–14. 
T.  F.  Stepinski,  S.  Ghosh,  R.  Vilalta,  (2006).  Automatic 
Recognition of Landforms on Mars Using Terrain 
Segmentation and Classification. In Proceedings of the 
9th  International  Conference  on  Discovery  Science, 
LNAI 4265, pp. 255–266. 
T.  F.  Stepinski,  M.  P.  Mendenhall,  B.  D.  Bue,  (2009). 
Machine cataloging of impact craters on Mars. Icarus, 
203(1),  pp.  77–87. 
https://doi.org/10.1016/j.icarus.2009.04.026 
S.  Ghosh,  T.  F.  Stepinski,  R.  Vilalta,  (2010).  Automatic 
annotation of planetary surfaces with geomorphic 
labels. IEEE Transactions on Geoscience and Remote 
Sensing,  48(1),  pp.  175–185.  https://doi.org/10.1109/ 
TGRS.2009.2027113 
C. Lee, (2019). Automated crater detection on Mars using 
deep learning. Planetary and Space Science, 170(2015), 
pp. 16–28. https://doi.org/10.1016/j.pss.2019.03.008 
L.  Bandeira,  W.  Ding,  T.  Stepinski,  (2012).  Detection of 
sub-kilometer craters in high resolution planetary 
images using shape and texture features. Advances in 
Space  Research,  49(1),  pp.  64–74. 
https://doi.org/10.1016/j.asr.2011.08.021   
L. F. Palafox, C. W. Hamilton, S. P. Scheidt, A. M. Alvarez, 
(2017).  Automated detection of geological landforms 
on Mars using Convolutional Neural Networks. 
Computers and Geosciences, 101(January), pp. 48–56. 
https://doi.org/10.1016/j.cageo.2016.12.015 
A. M. Barrett, M. R. Balme, M. Woods, S. Karachalios, D. 
Petrocelli, L. Joudrier, E. Sefton-Nash, (2022). NOAH-
H, a deep-learning, terrain classification system for 
Mars: Results for the ExoMars Rover candidate 
landing sites.  Icarus,  371  (September  2021),  114701. 
https://doi.org/10.1016/j.icarus.2021.114701  
T. Nagle-Mcnaughton, T. McClanahan, L. Scuderi, (2020). 
PlaNet: A Neural Network for Detecting Transverse 
Aeolian Ridges on Mars. Remote Sensing, 12(21), pp. 
1–15. https://doi.org/10.3390/rs12213607 
T.  Wilhelm,  M.  Geis,  J.  Püttschneider,  T.  Sievernich,  T. 
Weber, K. Wohlfarth, C. Wöhler, (2020). DoMars16k: 
A Diverse Dataset for Weakly Supervised 
Geomorphologic Analysis on Mars.  Remote  Sensing, 
12(23), pp. 1–38. https://doi.org/10.3390/rs12233981  
K. L. Wagstaff, Y. Lu, A. Stanboli, K. Grimes, T. Gowda, 
J. Padams, (2018). Deep Mars: CNN Classification of 
Mars Imagery for the PDS Imaging Atlas. 32nd AAAI 
Conference on Artificial Intelligence, AAAI, pp. 7867–
7872. 
B. Rothrock, J. Papon, R. Kennedy, M. Ono, M. Heverly, 
C. Cunningham, (2016). SPOC: Deep Learning-based 
terrain classification for Mars rover missions.  AIAA 
Space  and  Astronautics  Forum  and  Exposition, 
September  2016,  pp.  1–12.  https://doi.org/10.2514/ 
6.2016-5539 
R. Cao, J. Zhu, W. Tu, Q. Li, J. Cao, B. Liu, Q. Zhang, G. 
Qiu, (2018). Integrating Aerial and Street View Images 
for Urban Land Use Classification.  Remote  Sensing, 
10(10), 1553. https://doi.org/10.3390/rs10101553 
B. Zhou, A. Lapedriza, A. Khosla, A. Olivia, A. Torralba. 
(2017). Places: A 10 Million Image Database for Scene 
Recognition.  2017  IEEE  Transactions  on  Pattern 
Analysis  and  Machine  Intelligence,  pp.1452-1464. 
https://doi.org/10.1109/TPAMI.2017.2723009 
A. Martín, et al. (2015). TensorFlow: Large-scale machine 
learning on heterogeneous systems. Software available 
from tensorflow.org 
M.  Sugeno,  Industrial  applications  of  fuzzy  control, 
Elsevier Science Pub. Co., 1985 
N.  Siddique,  H.  Adeli.  Computational  Intelligence: 
Synergies  of  Fuzzy  Logic,  Neural  Networks  and 
Evolutionary Computing. Hoboken, NJ: Wiley, 2013. 
Squyres, S. W., Arvidson, R. E., Bollen, D., Bell III J. F., 
Brückner, J., Cabrol, N. A., et al. (2006). Overview of 
the  Opportunity  Mars  Exploration  Rover  Mission  to 
Meridiani Planum: Eagle crater to Purgatory ripple. J. 
Geophys.  Res.,  111,  E12S12.  doi:10.1029/2006JE002 
771 
Hynek,  B.  M.,  Arvidson,  R.  E.,  &  Phillips,  R.  J.  (2002). 
Geologic setting and origin of Terra Meridiani hematite 
Analysis of Ensemble of Neural Networks and Fuzzy Logic Classification in Process of Semantic Segmentation of Martian