
Tackling Model Drifts in Industrial Model-driven Software Product
Lines by Means of a Graph Database

Christof Tinnes1, Uwe Hohenstein1, Wolfgang Rössler2 and Andreas Biesdorf1

1T SSP ADM, Siemens AG, Otto-Hahn-Ring 6, 81730 Munich, Germany
2SMO RS EN CCIP AR, Siemens AG, Siemenspromenade 4, 91058 Erlangen, Germany

Keywords: Model-driven Approach, MagicDraw, Graph Database, Neo4j.

Abstract: This paper reports on our experience of using a graph database to efficiently compare very large models in an
industrial model-driven engineering project. The need for a comparison results from the fact that architectural
models are reused. They conform to a common domain-specific language but diverge as they belong to different
products managed in separate branches of a repository in the sense of a clone-and-own approach. In the
presented industry project, huge models are developed and reside in the commercial tool MAGICDRAW. In
fact, unlike many other tools, MAGICDRAW turned out to be capable to handle those huge models in industrial
environments. In this context, there is a strong necessity to detect and judge relevant differences between
models in different branches in order to avoid a model drift and loosing reuse opportunities across the products.
Indeed, MAGICDRAW has a built-in difference tool, which however exposes an excessive number of differences,
only a fraction of which are really relevant for certain tasks. We show that the capabilities of the graph database
NEO4J can be leveraged to reduce the differences to relevant ones. The expressiveness of NEO4J turned out to
be sufficient, just as the performance did.

1 INTRODUCTION

As software and systems are becoming increasingly
complex, methodologies, paradigms, and general reuse
concepts (Krueger, 1993) have been developed to han-
dle the increasing complexity. One applied approach
is Model-Driven Engineering (MDE) (Rodrigues Da
Silva, 2015), which uses higher-level models to ab-
stract from concrete software. Models describe and
document software at a higher abstraction level and
are also used to generate documentation in certain for-
mats and (parts of the) source code. Another reuse
concept is Software Product Line Engineering (SPLE).
The idea of SPLE is to manage a family of products
and reuse artifacts across different products of the fam-
ily (Pohl et al., 2005). The artifacts can be source code,
but other artifacts such as models can also be subject to
reuse in the software product line (Batoryayer, 2004).

In this paper, we report on challenges in a real
industrial project within our company. The project
has set up a model-driven product line in the railway
domain in which huge architectural models, described
in a SysML-like domain-specific language (DSL), are
the primary artifact. About 200 engineers use the
tool MAGICDRAW (No-Magic-Inc., 2021) to specify

architectural models in a graphical manner. Figure 1
shows one of several hundreds of modeling artefacts.

Since the product line has been organically grown,
starting with one product and adding product by prod-
uct over time, no platform approach with built-in vari-
ability support has been applied. Further reasons are
that not all potential products are known in advance,
the number of variants is expected to stay small, and
the development teams are organized product-wise,
not feature-wise. Consequently, the overhead for es-
tablishing and using a platform will not pay off (Pohl
et al., 2005). Instead, a managed cloning approach
(Dubinsky et al., 2013; Rubin et al., 2013) is followed:
The common baseline of all products constitutes the
main branch in a software versioning system, and prod-
ucts are kept in specific branches, initially copying the
common baseline for reuse. This means that product
branches are evolving independently of the baseline
over time; changes to common parts are merged into
the baseline or from the baseline to specific products
from time to time. However, the independent evolu-
tion of models – often performed by different people
– leads to a divergence of the common parts in the
product branches. In particular, we noticed that certain
important activities such as quality assurance, change

146
Tinnes, C., Hohenstein, U., Rössler, W. and Biesdorf, A.
Tackling Model Drifts in Industrial Model-driven Software Product Lines by Means of a Graph Database.
DOI: 10.5220/0011319800003269
In Proceedings of the 11th International Conference on Data Science, Technology and Applications (DATA 2022), pages 146-157
ISBN: 978-989-758-583-8; ISSN: 2184-285X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: An SysML architectural model artefact in MAGICDRAW(names are obfuscated for reasons of secrecy).

propagation, domain analysis and reuse are negatively
affected by causing high efforts and costs.This observa-
tion conforms to experiences in the literature (Krüger
and Berger, 2020; Rubin et al., 2012; Dubinsky et al.,
2013). Due to the high complexity and size of the ar-
chitectural models, an increasingly large manual effort
is currently required for maintaining reuse of the base-
line. One root cause for the efforts is the MAGICDRAW
difference tool showing a large number of differences,
especially (too) many fine-grained differences. Being
not handled properly, there is a risk that the efforts
even exceed the advantages of reusing commonalities.

To tackle the problem, we use the graph database
NEO4J to support an analysis of large model differ-
ences. We find that, without any further sophisticated
tooling, such a lightweight approach can answer many
important questions about model differences and pro-
vides a good starting point for further analysis. Partic-
ularly, we are enabled to detect and reduce the huge

number of model differences.
Section 2 introduces the real-world industrial case

study that we conducted, illustrating the problem of
comparing large SysML architectural models due to
a cloning approach. The preferred solution relies on
the graph database NEO4J. Section 3 briefly intro-
duces NEO4J and presents the approach in more detail,
whereupon Section 4 presents a few queries sufficient
for comparing models. The approach is evaluated in
Section 5 by discussing the results that we achieved.
Furthermore, we prove the feasibility of the approach
by applying it to the modeling data in this project. As
a result, the approach turned out to ease the detection
of critical model differences and to support central
software product-line engineering activities. Section
6 compares our work with existing approaches before
Sections 7 concludes the paper with some future ideas.

Tackling Model Drifts in Industrial Model-driven Software Product Lines by Means of a Graph Database

147

2 PROBLEM STATEMENT AND
CASE STUDY

The problem we are tackling in this paper occurred
in a concrete industrial project in our company us-
ing SysML in MAGICDRAW. The company builds
trains, covering small commuter rail to high-speed
trains. Trains consist of a lot of software components
that implement common functionality such as heating,
ventilation, and air conditioning, but also highly safety-
relevant features such as the drive control system. A
couple of years ago, the software engineering team
decided to follow a model-driven engineering (MDE)
methodology. Since the code bases have become very
large and complex, an MDE approach has been set up
to generate parts of the software components’ source
code from specified SysML models. Moreover, the
documentation of the train software, which is required
by official authorities, could be generated. Indeed, the
train domain is highly regulated and the software is
subject to qualification and certification requirements
such as IEC61508 (IEC, 2010). It is thus necessary
to maintain requirements traceability and exhaustive
documentation. Furthermore, traceability between re-
quirements and software components becomes easily
manageable; the language SCL itself used for coding
the software does not have object-oriented reuse con-
cepts such as inheritance. The MDE approach also
enables generating parts of the source code and thus
reusing source code components.

About 200 engineers are developing and maintain-
ing the architectural train models. The tool MAG-
ICDRAW is used as the overall modelling environ-
ment, since other alternative tools such as ECLIPSE
PAPYRUS did not provide the usability necessary for
such a large industrial application or failed to scale
to the size of the architecture models. To handle the
complexity and to keep MAGICDRAW responsive, the
model for the entire train software is divided into more
than 100 submodels, each covering a particular aspect
of functionality, such as the drive and break control.

Having many software components to be reused
across different train types leads to a software product
line in a MAGICDRAW-proprietary repository, where
each train type is kept in a different branch (clone-
and-own (Rubin et al., 2013; Dubinsky et al., 2013)).
The main line covers the common platform with those
parts that are independent of a particular train type.
The platform evolves in an extractive software product
line adoption path (Apel et al., 2013) by (manually)
identifying and regularly merging common features
into the platform for reuse; changes to common parts
in the platform model are propagated to the train types
that use the modified parts.

The clone-and-own approach is reasonable in
the project compared to a platform-based approach
(Krüger and Berger, 2020; Dubinsky et al., 2013; Ru-
bin et al., 2013), since it provides more flexibility in
developing new products. Furthermore, an indepen-
dence of products avoids unintended side effects (Du-
binsky et al., 2013; Krüger and Berger, 2020). Other
approaches such as feature traces (Fischer et al., 2016;
Kehrer et al., 2021) and accompanying tools turned out
to be insufficiently mature for industrial environments
unfortunately.

However, a drawback is that important tasks such
as change propagation, domain analysis, and quality as-
surance have become time-consuming. For instance, a
thorough quality assurance of safety-relevant changes
is indispensable to decrease the risk of failing software
qualification which in turn would lead to delays in the
time-to-market. All those tasks involve the analysis of
all the differences between two derivations or between
the platform model and a derivation, for example, to
check for certain violations, other quality issues, and
to identify reuse opportunities during domain analysis.
It is thus important to identify a drift in the models,
to find causes for the drift, and to take appropriate
countermeasures. This is currently a manual and very
time-consuming check.

MAGICDRAW indeed has a built-in visual “diff”
functionality but exposes about 34,000 differences for
just one single of 100 submodels. Despite being dis-
played in diagrams, some differences are not immedi-
ately graphically visible. One has to click on a graphi-
cal icon and dive into the textual specification to detect
differences at a deeper level. This is far too much
to get manually checked and requires more than six
days. In particular, it is hard to check whether a de-
viation is critical or not; this is some tacit knowledge
of the engineer who performs the check. For example,
some graphical differences are not important like a box
being moved in a diagram. Moreover, a diff in MAG-
ICDRAW consumes an excessive amount of RAM due
to the size of models and takes a long time in compu-
tation (30 minutes for one submodel). This all turned
a manual check be time-consuming and error-prone as
well, with a strong negative impact.

The consequences of overseeing a critical devia-
tion are manifold. There is a risk of failing a software
qualification by official authorities. Hence, the prod-
uct delivery could be delayed, presumably leading to
multi-million Euro penalties. Moreover, every missed
critical change can lead to inconsistencies between the
common platform and other derived platforms, known
as a model/architecture drift or unintentional diver-
gence (Schmorleiz and Lämmel, 2014; Kehrer et al.,
2021). This can be a risk for the entire reuse approach.

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

148

Table 1: Requirements.

R1 All deviations must be detected. However, the overwhelming amount of existing differences – which MAG-
ICDRAW exposes – should be reduced to semantic differences, i.e., those that are relevant for the engineers.
For example, if an interface has been added to a component, then this fact is sufficient instead of displaying
everything that belongs to that interface (what should be considered as a mere consequence).

R2 The comparison results must be easily comprehensible, e.g., in a tabular manner with all relevant information
such as ID, component name etc.

R3 The approach should be easy to handle without deeper understanding of the mechanism.
R4 The approach should offer flexibility to scope the investigation, e.g., detecting a typo in an element’s name is

important, but should be excludable for further analysis. Similarly, tacit knowledge should be addable.
R5 For developing checks, an interactive analysis by means of ad-hoc checks must be possible to try them out. A

graphical user interface is reasonable for investigating the model data in depth and diving into details.

Consequently, any disallowed – and potentially unde-
tected – deviation could cause severe problems which
let become an automated check important.

This work focuses on quality assurance tasks. Here,
an engineer analyzes the differences between different
trainset types or between the common platform and a
trainset type in this task in order to identify disallowed
deviations. Table 1 summarizes the requirements we
collected from engineers to achieve a feasible approach
for better supporting the analysis of differences.

3 NEO4J APPROACH

Since MAGICDRAW’s visual diff tool exposes an
overwhelming amount of fine-grained differences, we
searched for alternatives to return only relevant modifi-
cations and making the check easier and more straight-
forward.

3.1 Generic Extraction Step

To this end, we implemented a proprietary extractor
that extracts elements using MAGICDRAW’s OpenAPI
interface. OpenAPI gives access to the DSL and model
elements in a programmatic manner, e.g., for Java.

Our extraction follows a generic approach that is
independent of a particular DSL. We derive all the
important model parts: The containment hierarchy,
which directly corresponds to the containment views in
MAGICDRAW, the typeOf relationship between DSL
elements, attributes of elements such as documenta-
tion or arbitrary properties, and connectors between
elements.

The derived structure follows a generic data model
that reflects the extracted parts. A type MDBaseElement
contains the general specification with the MAGIC-
DRAW-internal ID, name, level (in the hierarchy),
DSL type or stereotype (for example, Package or
S7ProxyPort). If an element is a type of another
MDBaseElement, a typeId refers to the ID of that ele-
ment. childElements contains an array of child nodes,

embedded in the same manner, to reflect the contain-
ment tree. MDBaseElement possesses several subtypes:

• MDElement represents an element of the DSL;

• MDConnection stores a connection between
MDElements;

• MDDiagram denotes a graphical diagram;

• MDPresentationElement is a graphical component
within a diagram.

Listing 1 shows an excerpt of one element being
exported in JSON format.

{ "elementImplType": "MDElement",

"id": "a560294_1498144258284_393608_15767",

"name": "Maintenance operator",

"dslType" : "Actor",

"level": 2,

"typeId": null ,

"belongsTo": null , // if graphical

"documentation": "Operator of maintenance

↪→ facilities",

"properties": [...],

"connections": [{
"elementImplType": "MDConnection",

"direction": "SourceToTarget",

"id": "a560294_1498144259753_261476_15814",

"dslType": "Generalization",

"level": 3,

"sourceId":

↪→ "a560294_1498144258284_393608_15767",

"targetId":

↪→ "_a560294_1498144258300_317304_15770"

...

}],

"childElements":

[{ "elementImplType" : "MDElement",

... same structure for child ...

}, ...

]

}

Listing 1: JSON excerpt of derived information.

There is a clear separation between the DSL ele-
ments and their graphical representations in diagrams
or tables, keeping the link between elements and
their use in graphical representations by means of a

Tackling Model Drifts in Industrial Model-driven Software Product Lines by Means of a Graph Database

149

belongsTo relationship. A MDDiagram possesses x/y
coordinates, width, height, and a reference to the
MDElement it represents. Indeed, an MDElement might
possess several graphical representations in different
diagrams.

An MDBaseElement might possess connections,
which have a direction, a certain dslType, a sourceId
(which is the node itself) and a targetId referring to
the related element due to technical UML reasons.

Further properties of MDElement’s are kept as key/-
value pairs with a type MDProperty.

Since the data model is independent of a concrete
DSL (although DSL names are available as values
of dslType), the data extraction is applicable for any
DSL.

To compare two models, these models must be
processed as described before.

3.2 Transfer to Neo4j

To gain more flexibility in analyzing the models, the
JSON outcome is transferred into the graph database
NEO4J.

The NEO4J data model consists of nodes and re-
lationships. Nodes possess properties and are mainly
used to represent entities. A relationship connects two
nodes and is guaranteed to have a valid source and
target node. Relationships are the key feature of graph
databases as they allow for finding related data. A
traversal is a typical way to query a graph, navigating
from a node to related nodes by following relation-
ships. Despite having a direction, relationships are
traversable in either direction. Both nodes and rela-
tionships may have properties. Properties are named
values where the name (or key) is a string. A label in
NEO4J can assign types to nodes and relationships; all
nodes with the same label belong to the same logical
set. A node may be labelled with any number of labels,
even none. NEO4J queries can work with these sets,
making queries easier to understand and more efficient
to execute.

The mapping of the generic data model to NEO4J is
as follows. All MDBaseElements are mapped to nodes,
obtaining two labels according to the class in the
generic model (e.g., MDElement or MDDiagram) and
the DSL type (e.g., S7ProxyPort). MDProperty’s are
stored as nodes with a label Property, referring to
their MDBaseElement by means of a relationship. The
specific types of references (containment, connections,
typeOf etc.) are also reflected by relationships. Ref-
erences, which have been stored by IDs in JSON, are
resolved by explicit relationships between elements.

To distinguish two models, a root node of type
MDProject is introduced for each loaded model: Each

node uniquely refers to its model root by means of a
belongsTo relationship.

An important property is that MAGICDRAW iden-
tifiers are not changing when taking the platform and
deriving a derivate. Thus, identical elements in two
imported models, have the same unique MAGICDRAW
ID; we call them pendants. The query in Listing 2
sets up another relationship refersTo between those
pendants based upon IDs:

MATCH

(np)-[:belongsTo]->(rp:MDProject{id:"Platform"}),

(na)-[:belongsTo]->(ra:MDProject{id:"ProjectA"})

WHERE np.id=na.id

CREATE (np)-[:refersTo]->(na)

Listing 2: CQL query let refer all elements in Platform to
elements in ProjectA.

The query is formulated in NEO4J’s Cypher query
language (CQL) in a declarative manner. MATCH iden-
tifies nodes and relationships. (...) represents a
node and -[...]- a relationship between two nodes;
those relationships might ask for a certain direction
-[]->. Labels can be placed behind a colon. Hence,
(np) represents a node of any type (as the label is
left out), whereas (rp:MDProject) is a node with la-
bel, i.e., of type MDProject. (np) must be related
to a MDProject node (rp:MDProject) via a relation-
ship of type belongsTo. (rp) has to satisfy the condi-
tion {id:"Platform"}. Similarly, (na) must belong to
“ProjectA” (i.e., (ra)). CREATE establishes a relation-
ship of type refersTo between both if they possess the
same ID (np.id=na.id).

4 COMPARISON QUERIES

Having the data in NEO4J enables us to query
for both the generic and the DSL elements with
CQL. Hence, calculating the difference between
two models can be performed by a collection
of CQL queries. Figure 2 gives an example
for a visual query result in NEO4J comparing
a node (ID=a560294 1506950258974 794259 327249,
name=’ATP Fahrtrichtung’) in two projects, “Plat-
form” and “ProjectA”. The different types of rela-
tionships become visible: the newly created refersTo
and belongsTo as well as childOf (reflecting the
containment hierarchy), hasType, hasProperty, and
connection. Colors indicate labels. Selecting a par-
ticular node, its name and labels become visible (e.g.,
key and value of a green Property node).

Please note the more readable representation of
connections. There is a direct relationship between
two nodes, and the direction (e.g., source to target),

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

150

Figure 2: Two nodes to be compared and their relationships.

dslType, and MDConnection ID are attached to the re-
lationship.

The main goal of this paper is now to find a bet-
ter way to determine the real, i.e., “semantic”, dif-
ferences (which should be much less than MAGIC-
DRAW’s 34,000). Thereby, we want to evaluate the
power of NEO4J’s CQL for comparing huge models
wrt. expressiveness and performance and to determine
the number of required queries. To this end, we want
to investigate whether we are able to implement some
generic, i.e., DSL agnostic, checks that are sufficient
to cover all the deviations.

As a first result, it turned out that the queries listed
in Table 2 are sufficient to detect all the relevant differ-
ences. In the following, we discuss the corresponding
CQL queries.

MATCH

(np)-[:belongsTo]->(rp:MDProject{id:"Platform"}),

(na)-[:belongsTo]->(ra:MDProject{id:"ProjectA"}),

(np)-[:refersTo]->(na)

WHERE np.id = na.id AND np.name <> na.name

AND NOT 'Properties' IN labels(np)

RETURN np.id, np.name as Name1 , na.name as Name2

Listing 3: Different names for pendants (Query 1).

The query for Q1 in Listing 3 searches for nodes
(na) and (np) of any label that belong to the projects to

Table 2: Comparison Queries.

Q1 Which pendants have different names?
Q2 Which pendants have additional or missing

sons?
Q3 Which pendants have different parent nodes?
Q4 Which pendants possess different MAGIC-

DRAW properties (wrt. hasProperty)? Car-
dinalities are specified here, which affect the
generated software.

Q5 Which pendants possess a different docu-
mentation (i.e., doc(umentation))?

Q6 Which pendants refer to different types, i.e.,
labels?

Q7 Which pendants have different connected
elements (via connection)?

be compared (via the belongsTo relationship), where
both nodes should possess the same ID, but differ-
ent names; the refersTo relationship is redundant to
the condition np.id=na.id, but useful to visualize this
relationship. Nodes of label Properties are explic-
itly excluded since handled in Q4. Figure 3 shows
the resulting table, displaying the name differences in
columns Name1 and Name2, quite often some typos. In
addition to ID and names, the labels (especially the
DSL types) can also be issued in the RETURN clause.

Tackling Model Drifts in Industrial Model-driven Software Product Lines by Means of a Graph Database

151

Figure 3: Displaying different names.

Especially labels make the decision easier to check
whether the deviation is allowed or not. Hence, it
is quite easy to tell critical components apart from
non-critical ones. Furthermore, non-critical compo-
nents can be excluded from the result by adding further
filters, e.g., on labels. Anyway, it is also possible to
obtain a graphical result (similar to Figure 2) by return-
ing nodes and relationships as np, na, rel instead of
properties.

As indicated, MAGICDRAW’s diff tool leads to an
excessive number of differences. Determining only the
“semantic” differences is in fact one major problem to
tackle. For example, if an element has been added,
we are not interested in all sub-elements of that ele-
ment, but the added element itself is sufficient to know.
Moreover, a single new element often leads to several
modifications to keep internal associations consistent.
Listing 4 determines those nodes. Missing sons are
handled analogously.

MATCH

(sa)-[:belongsTo]->(ra:MDProject{id:"ProjectA"}),

(sa)-[:childOf]->(fa),

(fp)-[:belongsTo]->(rp:MDProject{id:"Platform"})

WHERE fa.id = fp.id AND NOT () -[:refersTo]->(sa)

AND 'MDElement' IN labels(sa)

RETURN DISTINCT sa.id AS id, sa.name AS name ,

fa.id AS fid, fa.name AS fname ,

fa.level AS flevel , labels(sa) AS sonlabels ,

labels(fa) AS flabels

Listing 4: Newly added sons in ProjectA (Query 2).

Son (sa) must belong to ”ProjectA” and be child
of a father (fa). There must be a pendant (fp) that
refersTo (fa) in ”Platform” with the same ID. The
WHERE condition states that there must not exist any

pendant for son (sa). Moreover, graphical represen-
tations are excluded by a condition ’MDElement’ IN
labels(sa). RETURN yields for each missing node its
ID and name, the father’s ID, name, and level, and the
labels of son and father. The number of results can
easily be reduced by adding additional filters incremen-
tally. For instance, differences at levels >= 8 might
be too detailed and could be excluded by adding a
subcondition “and sa.level<8”. Anyway, the tabular
result view allows for quickly checking the deviations.

Query Q3 in Listing 5 has a similar structure: (np)
and (na) are the “identical” nodes (np.id=na.id), and
(fp) and (fa) their fathers, resp.

MATCH

(np)-[:belongsTo]->(rp:MDProject{id:"Platform"}),

(na)-[:belongsTo]->(ra:MDProject{id:"ProjectA"}),

(np)-[:childOf]->(fp),(na)-[:childOf]->(fa)

WHERE np.id=na.id AND fp.id <> fa.id

RETURN np.id, np.level , na.level

Listing 5: Identical nodes with different parents (Query 3).

Determining pendants with different properties is
more complex and challenged us and NEO4J. How-
ever, we could benefit from the fact that queries can
be cascaded in CQL. Query Q4 in Listing 6 starts with
nodes np for “Platform” and determines the proper-
ties prp of each node, thereby restricting the nodes to
MDElements. From the result, we select (WITH) the prop-
erty prp, the node ID, and the set of attached labels for
successive subqueries. Having ordered the properties
by key, i.e., obtaining an ordered list, another WITH
clause converts property keys and values into a collec-
tion (collect). Next, the nodes na of ”ProjectA” and
their properties pra are handled analogously, thereby
referring to id1. The corresponding MATCH is OPTIONAL

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

152

in order to handle empty sets properly. Finally, the
sorted list of keys and values are compared.

MATCH

(np)-[:belongsTo]->(rp:MDProject{id:"Platform"}),

(np)-[:hasProperty]->(prp)

WHERE "MDElement" IN labels(np)

WITH prp, np.id AS id1, labels(np) as label

ORDER BY prp.key

WITH id1, label , collect(prp.key) AS keys1 ,

collect(prp.value) AS values1

OPTIONAL MATCH

(na)-[:belongsTo]->(ra:MDProject{id:"ProjectA"}),

(na)-[:hasProperty]->(pra)

WHERE na.id = id1

WITH id1, label , keys1 , values1 , pr

ORDER BY pra.key

WITH id1, label , keys1 , values1 ,

collect(pra.key) AS keys2 ,

collect(pra.value) AS values2

WHERE keys1 <> keys2 OR values1 <> values2

RETURN DISTINCT id1, label ,keys1 , values1 ,

keys2 , values2

Listing 6: Check for pendants with different properties
(Query 4).

Listing 7 handles Query Q5. The documentation is
stored as a node property doc, similar to id and name.
The query checks for different doc values (np.doc <>

na.doc) or having a documentation only at one side
(e.g., EXISTS(np.doc) AND NOT EXISTS(na.doc)).

MATCH

(np)-[:belongsTo]->(rp:MDProject{id:"Platform"}),

(na)-[:belongsTo]->(ra:MDProject{id:"ProjectA"}),

(np)-[r:refersTo]->(na)

WHERE np.id=na.id

AND (np.doc <> na.doc

OR (EXISTS(np.doc) AND NOT EXISTS(na.doc))

OR (EXISTS(na.doc) AND NOT EXISTS(np.doc)))

RETURN np.id,na.doc,np.doc

Listing 7: Check for pendants with different documentation
(Query 5).

Query Q6 is split into three different subqueries: a
node has a type but the pendant has none (Q6a), a node
has no type but the pendant does (Q6b), and both have
a type, but different ones (Q6c). From a syntactical
point of view, this could be expressed in a single query
as well, however, performance then suffers drastically.

MATCH -- Q6a (Q6b analogously)

(np)-[:belongsTo]->(rp:MDProject{id:"Platform"}),

(na)-[:belongsTo]->(ra:MDProject{id:"ProjectA"}),

(np)-[ht:hasType]->(tp),(np)-[r:refersTo]->(na)

WHERE np.id = na.id AND NOT (na)-[:hasType]->()

RETURN np,na,tp,ht,r

Listing 8: Check for pendants with different types (Query
6a/b).

MATCH -- Q6c

(np)-[:belongsTo]->(rp:MDProject{id:"Platform"}),

(na)-[:belongsTo]->(ra:MDProject{id:"ProjectA"}),

(np)-[htp:hasType]->(tp),

(na)-[hta:hasType]->(ta),

(np)-[r:refersTo]->(na)

WHERE np.id = na.id AND tp.id <> ta.id

RETURN DISTINCT np.id,na.id,tp.id,ta.id

Listing 9: Check for pendants with different types (Query
6c).

Query Q7 is handled similarly by three subqueries,
but not shown here.

So far, this a quite general consideration of dif-
ferences, which already reduces the number of differ-
ences to semantic ones heavily. However, as already
mentioned, some deviations are allowed in certain con-
texts. To handle this aspect, special conditions can be
added to better reflect the analyzer’s knowledge. For
example, some model elements are marked as sealed,
which means they must not be changed neither in their
external interfaces nor their internals. Hence, the fol-
lowing query returns all those elements with such a
property valued “true” with all their sons s recursively
thanks to ’*’ behind childOf. The result can then be
checked for any differences.

MATCH

(np)-[:belongsTo]->(rp:MDProject{id:"Platform"}),

(np)-[h:hasProperty]->(p),

(s)-[c:childOf*]->(np)

WHERE p.key='sealed' AND p.value="true"

RETURN np.id, s.id

Listing 10: Further scoping (sealed components).

5 EVALUATION

We start our evaluation with judging the expressiveness
and performance of NEO4J. It turns out that NEO4J’s
CQL is a very powerful query mechanism. We were
able to express all the necessary checks (as listed in
Table 2) and could not detect any limitations in com-
putation. We were surprised that even very elaborated
checks, e.g., Listing 6, can be specified due the pos-
sibility to cascade queries, although it took us some
time to find a solution. Moreover, performance is ab-
solutely acceptable. Indeed, we applied query tuning
sometimes. For instance, an explicit comparison of
IDs in addition to the equivalent belongsTo relation-
ship speeds up queries. And in Q6 (9), we calculated
the nodes having a type in one project but none in the
other, and to compare differences only for those nodes
with a type in several queries.

Tackling Model Drifts in Industrial Model-driven Software Product Lines by Means of a Graph Database

153

In summary, the NEO4J-based approach brought
up several advantages wrt. the requirements in Table
1:

R1: Concerning the overall approach, we checked
the output of our NEO4J-based analysis carefully with
a domain expert who usually controls the differences
in a manual manner. First, everything we detected
by means of CQL queries was correct. Even more,
several critical problems, which were not recognized
during the manual check could be discovered, e.g.,
typos in names (cf. Figure 3). The other way round,
all real differences seemed to be detected within our
analysis. Honestly, we did not check all the violations,
but picked up a large number of relevant deviations.

It is possible to reduce the model diff to seven
CQL queries – achieving much less, now semantic
differences. The results of all the checks are summa-
rized in Table 3. For example, moving a subtree to
another parent node leads to 11763 node differences
in MAGICDRAW compared to 60 violations (cf. query
Q3).

Indeed, the total number of nodes is less than the
sum of detected incidents in Table 3 since the query
results contain overlaps in nodes: Some nodes have,
e.g., additional children, but also further properties
and/or connections. Anyway, the numbers expose the
number of violations in each check while the number
of distinct nodes is less relevant.

R2: A tabular text representation of query results
(cf. Figure 3) helps a lot to browse through and to
judge the findings. It turned out to be useful to return
the labels and the level, too. Then it becomes easier
to decide whether a certain difference is critical or
not, e.g., because it occurs at a deeper level or is not a
critical component. This means that an experienced en-
gineer is able to quickly further reduce the occurrences,
e.g., by adding NOT ’MDDiagram’ IN labels(n) to ex-
clude graphical representations. Similarly, an ad-hoc
investigation and more advanced scoping (e.g., restrict-
ing the scope to SoftwareComponentInstances only)
by asking for specific labels can be easily added with-
out recompilation.

R3: With executing only seven predefined queries,
many of the analysis tasks could be simplified. Be-
cause of the graphical and tabular representation, re-
sults can be understood without deeper understanding
of graph databases, the querying language, or meta-
model specific aspects.

R4: As shown in Section 4, there is enough flexibil-
ity to scope the search and to adjust queries according
to tacit engineers’ knowledge, e.g., Listing 10. For ex-
ample, there exists some slight kind of feature model in
the DSL, however, without any dedicated tool support.
Thus, a specific feature allows for new sons (for that

Table 3: Comparison Numbers.

Name Occurences
Q1 different names 744 nodes
Q2 additional sons 947 parents

missing sons 980 parents
Q3 nodes with different parents 60 nodes
Q4 no properties in one project 53 nodes

different properties 3840 nodes
Q5 different documentation 91 occ’s
Q6 pendant has no type 12 nodes

pendant has additional type 112 nodes
different types 38 nodes

Q7 no connections at one side 717 occ’s
different connections 345 occ’s

feature) while having removed some others that are
actually replaced by the feature. Those more complex
conditions can be formulated in CQL as well.

R5: There are huge time savings compared to an
implementation based upon comparing JSON data
in a programming language, especially in the testing
phase when queries are developed incrementally.
Queries can be adjusted and run immediately without
any program/compile/check cycle. Moreover, the
visualization helps to understand query results
and the DSL “implementation”: Diving into DSL
internals is possible by checking an element (given
by an ID) and all its surroundings, e.g., MATCH
(n {id:" 18 5 1 a560294 1558807659 964294"}),
(n)-[r]-(x) RETURN n,x,r which, in fact, returns the
result in Figure 2. It becomes immediately visible
that the “Platform” node possesses more properties
(hasProperty). This is especially useful to check the
correctness of CQL queries.

6 RELATED WORK

Models are first-class artifacts in MDE, and as such
subject to permanent changes. Several studies in the
literature support and manage the evolution of models
by means of collaborative work on models, versioning
of models, or quality assurance of models (Khalil and
Dingel, 2013; Arendt and Taentzer, 2013; Paige et al.,
2016; Kehrer, 2015; Van Der Straeten et al., 2009).
The importance of quality assurance in model evolu-
tion or MDE in general has often been discussed. For
example, (Krogstie et al., 2006) and (Mohagheghi and
Dehlen, 2008) suggest generic quality frameworks for
MDE, while(Arendt and Taentzer, 2013) tackle model
smell detection and resolution. Another approach by
(Giraldo et al., 2014) integrates the metaphor of techni-
cal debt into MDE. All the proposed solutions are built
on top of the Eclipse Modeling Framework (EMF) and
work on the level of models and not on model differ-
ences. Our approach is thought to handle large model

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

154

differences and support engineers in understanding
large model differences.

While model evolution focuses on the differences
in the temporal dimension, other work also handles
the product dimension in a product line, especially the
industrial challenges of variability management. For
instance, (Chen and Babar, 2010) present a survey that
discusses organizational challenges, complexity and vi-
sualizing complex variability, extraction of variability
from technical artifacts, evolution of variability itself,
variability modeling and documentation, design deci-
sion management, and knowledge management and
other tool support. (Berger et al., 2020) explicitly men-
tion MDE as a challenge for variability management
and the lack of SPLE concepts in many domain spe-
cific languages. Some work attempts to unify version
and variability management by proposing variation
control systems. A classification of variation control
systems is given by (Linsbauer et al., 2017).

Another approach to support the comparison of
two derivations is to condense the model differences.
Another approach (Tinnes et al., 2021) aggregates mul-
tiple fine-grained differences in larger patterns based
on semantic lifting (Kehrer et al., 2011) and model
transformation mining (Tinnes et al., 2021). This al-
lows filtering model differences for specific change pat-
terns, too. Our approach is more flexible. Queries can
easily be adjusted or new queries can be formulated
to answer specific questions, whereas in the approach
(Tinnes et al., 2021) new change patterns have to be
defined. Furthermore, our approach is independent of
the tooling stack.

Closely related to our approach, several query lan-
guages for models have been introduced in the past two
decades, mainly for the Eclipse Modeling Framework
and UML-based tools such as the Object Constraint
Language (OCL) (OCL, 2014). The EMF ecosystem
brought up many model query languages and tools
such as EMF Query (EMF,), FunnyQT (Horn, 2013),
and Emf-IncQuery (Bergmann et al., 2011).Unfortu-
nately, there is no formal comparison of the power
and expressiveness of those query languages. Some
deficits, mostly for OCL, could not be detected for
NEO4J.

In general, the NEO4J approach does not depend
on other frameworks like EMF and is therefore easy to
employ. Furthermore, queries are easy to understand
and can flexibly be adjusted due to the graph-based
syntax. Additionally, NEO4J is an industry proven tool
and scalable to large amounts of modeling data.

Concerning the use of NEO4J, several papers ex-
ist focusing on performance, especially compared to
relational databases. Most NEO4J comparisons use
artificial test scenarios, for instance, (Vicknair et al.,

2010) who experiments with different artificial data
sets of 1,000, 5,000, 10,000 and 100,000 nodes with
payload attributes.

Other comparisons use data sets coming from
real applications. (Khan et al., 2017) compare Or-
acle 11g and the Neo4j graph databases 5 (3.0.3
community edition) using a proprietary Medical Di-
agnostic System. The data set comprises of about
28,000 patients, 625,721 patient visits, 869,666 pa-
tient IssueMed records, to mention the main tables.
Five count queries join two or three tables. Their re-
sult show that Neo4j performs much better when the
data set size increases. While Oracle performs queries
in a few seconds (depending on the query), Neo4j
requires about 0.3 sec.

(Joishi and Sureka, 2015) use some process-mining
algorithms for their comparison of MySQL and Neo4j
: Similar-Task (finding similarity between actors based
on the intersection of activities) and Sub-Contract
(causal dependencies between actors in carrying out
a business process). MySQL is 32 times faster than
Neo4j for the similarity calculation. Concerning sub-
contracts, Neo4j attains a performance boost of a mag-
nitude of 7x over MySQL.

But due to our knowledge, no research has been
applied in the context of comparing huge architectural
models thereby judging the capabilities and benefits
of NEO4J.

7 CONCLUSION

In this paper, we introduced an industrial case study
where the tool MAGICDRAW is used in a model-driven
engineering manner. System architectures of a product
family are modeled using an extended SysML DSL to
support reuse of architecture models. In this context,
one major issue arises: To effectively compare two
large MAGICDRAW models. Indeed, MAGICDRAW
has tool support to display differences, however, the
result consists of ten-thousands of differences which
are hardly to comprehend. To handle this issue, we pre-
sented a flexible approach based on the NEO4J graph
database. More precisely, comparisons are formulated
and detected by means of CQL queries.

As a major result, the number of differences
could be drastically reduced to “semantic” differ-
ences, which better aggregate differences in the sense
that adding a new element does not display all sub-
elements. We also achieve flexibility to let engi-
neers scope the context in order to further reduce
the differences by tacit knowledge. The power of
NEO4J queries turned out to be sufficient, even com-
plex queries could be formulated. The overall perfor-

Tackling Model Drifts in Industrial Model-driven Software Product Lines by Means of a Graph Database

155

mance is acceptable although some tuning was par-
tially required.

The approach can be generalized to other tools,
too, due to a central data model. In case of other tools
than MAGICDRAW, a different type of analyzer is
required to feed the data model. For instance, it should
be no problem to apply the approach to EMF-based
modelling tools. Similarly, other graph databases can
be applied by implementing a different transfer from
the data model. Whether the query functionality and
performance is sufficient certainly depends on the tool.

Our future work intends to improve the current
pipeline. The steps to derive the content of MAGIC-
DRAW models, to transfer the data to NEO4J, where
validation is performed, can be reduced to one step.
Moreover, the pipeline should be invokable within
MAGICDRAW. In this context, we also have to tackle
the only remaining performance issue: Without any
further improvement, the import steps take a few hours,
while the validation itself – query evaluation – is pretty
fast.

REFERENCES

Eclipse modeling framework (emf) model query.
https://www.eclipse.org/emf-query/. Last access:
April 4, 2022.

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013).
Feature-Oriented Software Product Lines - Concepts
and Implementation. Springer.

Arendt, T. and Taentzer, G. (2013). A tool environment
for quality assurance based on the Eclipse Modeling
Framework. In ASE, pages 141–184. IEEE/ACM.

Batoryayer, A. (2004). Scaling step-wise refinement. TSE,
30(6):355–371.

Berger, T., Steghöfer, J.-P., Ziadi, T., Robin, J., and Martinez,
J. (2020). The state of adoption and the challenges of
systematic variability management in industry. ESE.

Bergmann, G., Ujhelyi, Z., Ráth, I., and Varró, D. (2011).
A graph query language for EMF models. In LNCS,
volume 6707 LNCS, pages 167–182.

Chen, L. and Babar, M. (2010). Variability management
in software product lines: An investigation of contem-
porary industrial challenges. In LNCS, volume 6287
LNCS, pages 166–180.

Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker,
M., and Czarnecki, K. (2013). An exploratory study of
cloning in industrial software product lines. In CSMR,
pages 25–34. IEEE.

Fischer, S., Linsbauer, L., Lopez-Herrejon, R., and Egyed,
A. (2016). A vision for enhancing clone-and-own with
systematic reuse for developing software variants. Lec-
ture Notes in Informatics (LNI), Proceedings - Series
of the Gesellschaft fur Informatik (GI), P252:95–96.

Giraldo, F., España, S., Pineda, M., Giraldo, W., and Pastor,
O. (2014). Integrating technical debt into MDE. CEUR
Workshop Proceedings, 1164:145–152.

Horn, T. (2013). Model querying with funnyqt. In Duddy,
K. and Kappel, G., editors, Theory and Practice of
Model Transformations, pages 56–57, Berlin, Heidel-
berg. Springer.

IEC (2010). 61508: Functional safety of electrical/elec-
tronic/programmable electronic safety-related systems.
Technical report, IEC.

Joishi, J. and Sureka, A. (2015). Graph or relational
databases: A speed comparison for process mining
algorithm. Proc. of 19th International Database Engi-
neering &; Applications Symposium, Yokohama.

Kehrer, T. (2015). Calculation and Propagation of Model
Changes based on User-Level Edit Operations: A Foun-
dation for Version and Variant Management in Model-
Driven Engineering. PhD thesis, University of Siegen.

Kehrer, T., Kelter, U., and Taentzer, G. (2011). A rule-based
approach to the semantic lifting of model differences
in the context of model versioning. In ASE, pages
163–172. ACM/IEEE.

Kehrer, T., Thüm, T., Schultheiß, A., and Bittner, P. (2021).
Bridging the gap between clone-and-own and software
product lines. In ICSE, pages 21–25. IEEE/ACM.

Khalil, A. and Dingel, J. (2013). Supporting the evolution of
UML models in model driven software development:
a survey. School of Computing, Queen’s University,
Ontario.

Khan, W., Ahmed, E., and Shahzad, W. (2017). Predictive
performance comparison analysis of relational & nosql
graph databases. Int. Journal of Advanced Computer
Science and Applications 8(5), January 2017.

Krogstie, J., Sindre, G., and Jørgensen, H. (2006). Process
models representing knowledge for action: A revised
quality framework. European Journal of Information
Systems, 15(1):91–102.

Krueger, C. (1993). Software Reuse. ObjectWorld Confer-
ence.

Krüger, J. and Berger, T. (2020). An empirical analysis of
the costs of clone-and platform-oriented software reuse.
In ESEC/FSE, pages 432–444.

Linsbauer, L., Berger, T., and Grünbacher, P. (2017). A clas-
sification of variation control systems. ACM SIGPLAN
Notices, 52(12):49–62.

Mohagheghi, P. and Dehlen, V. (2008). Developing a quality
framework for model-driven engineering. In LNCS,
volume 5002 LNCS, pages 275–286.

No-Magic-Inc. (2021). MagicDraw website.
https://www.magicdraw.com/. Last access: April 4,
2022.

OCL (2014). Object Constraint Language, Version 2.4. Tech-
nical Report March.

Paige, R., Matragkas, N., and Rose, L. (2016). Evolving
models in Model-Driven Engineering: State-of-the-art
and future challenges. JSS, 111:272–280.

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

156

Pohl, K., Böckle, G., and Linden, F. (2005). Software Prod-
uct Line Engineering: Foundations, Principles, and
Techniques.

Rodrigues Da Silva, A. (2015). Model-driven engineering:
A survey supported by the unified conceptual model.
Computer Languages, Systems and Structures, 43:139–
155.

Rubin, J., Czarnecki, K., and Chechik, M. (2013). Manag-
ing cloned variants: A framework and experience. In
SPLC, pages 101–110. ACM.

Rubin, J., Kirshin, A., Botterweck, G., and Chechik, M.
(2012). Managing forked product variants. In SPLC,
volume 1, pages 156–160.

Schmorleiz, T. and Lämmel, R. (2014). Similarity man-
agement via history annotation. SATToSE 2014—Pre-
proceedings, page 45.

Tinnes, C., Kehrer, T., Joblin, M., Hohenstein, U., Biesdorf,
A., and Apel, S. (2021). Learning domain-specific edit
operations from model repositories with fsm. In ASE.
ACM/IEEE.

Van Der Straeten, R., Mens, T., and Van Baelen, S. (2009).
Challenges in model-driven software engineering. In
LNCS, volume 5421, pages 35–47.

Vicknair, C., Macias, M., Nan. X., Zhao, Z., and et al.
(2010). A comparison between a graph and a rela-
tional database: A data provenance view. Proc. of 48th
Annual Southeast Regional Conference, 2010, Oxford,
(USA).

Tackling Model Drifts in Industrial Model-driven Software Product Lines by Means of a Graph Database

157

