(1), pages 4171–4186. Association for Computational
Linguistics.
Domeniconi, G., Masseroli, M., Moro, G., and Pinoli, P.
(2014a). Discovering new gene functionalities from
random perturbations of known gene ontological an-
notations. pages 107–116. INSTICC Press.
Domeniconi, G., Moro, G., Pagliarani, A., Pasini, K., et al.
(2016a). Job Recommendation from Semantic Sim-
ilarity of LinkedIn Users’ Skills. In ICPRAM 2016,
pages 270–277. SciTePress.
Domeniconi, G., Moro, G., Pasolini, R., and Sartori, C.
(2014b). Iterative Refining of Category Profiles for
Nearest Centroid Cross-Domain Text Classification.
In IC3K 2014, Rome, Italy, October 21-24, 2014,
Revised Selected Papers, volume 553, pages 50–67.
Springer.
Domeniconi, G., Moro, G., Pasolini, R., and Sartori, C.
(2015). A Comparison of Term Weighting Schemes
for Text Classification and Sentiment Analysis with
a Supervised Variant of tf.idf. In DATA (Revised Se-
lected Papers), volume 584, pages 39–58. Springer.
Domeniconi, G., Semertzidis, K., L
´
opez, V., Daly, E. M.,
et al. (2016b). A novel method for unsupervised
and supervised conversational message thread detec-
tion. In DATA 2016 - Proc. 5th Int. Conf. Data Sci-
ence, Technol. and Appl., Lisbon, Portugal, 24-26
July, 2016, pages 43–54. SciTePress.
Dong, L., Yang, N., Wang, W., Wei, F., et al. (2019).
Unified language model pre-training for natural lan-
guage understanding and generation. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alch
´
e-Buc, F.,
et al., editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.
Fan, A., Gardent, C., Braud, C., and Bordes, A. (2019).
Using local knowledge graph construction to scale
seq2seq models to multi-document inputs. In
EMNLP/IJCNLP (1), pages 4184–4194. Association
for Computational Linguistics.
Fernandes, F. S., da Silva, G. S., Hilel, A. S., Carvalho,
A. C., et al. (2019). Study of the potential adverse ef-
fects caused by the dermal application of dillenia in-
dica l. fruit extract standardized to betulinic acid in
rodents. Plos one, 14(5):e0217718.
Frisoni, G. and Moro, G. (2020). Phenomena Explanation
from Text: Unsupervised Learning of Interpretable
and Statistically Significant Knowledge. In DATA (Re-
vised Selected Papers), volume 1446, pages 293–318.
Springer.
Frisoni, G., Moro, G., and Carbonaro, A. (2020a). Learning
Interpretable and Statistically Significant Knowledge
from Unlabeled Corpora of Social Text Messages: A
Novel Methodology of Descriptive Text Mining. In
DATA 2020 - Proc. 9th Int. Conf. Data Science, Tech-
nol. and Appl., pages 121–134. SciTePress.
Frisoni, G., Moro, G., and Carbonaro, A. (2020b). Towards
Rare Disease Knowledge Graph Learning from So-
cial Posts of Patients. In RiiForum, pages 577–589.
Springer.
Frisoni, G., Moro, G., and Carbonaro, A. (2020c). Unsuper-
vised Descriptive Text Mining for Knowledge Graph
Learning. In IC3K 2020 - Proc. 12th Int. Joint Conf.
Knowl. Discovery, Knowl. Eng. and Knowl. Manage.,
volume 1, pages 316–324. SciTePress.
Frisoni, G., Moro, G., and Carbonaro, A. (2021). A survey
on event extraction for natural language understand-
ing: Riding the biomedical literature wave. IEEE Ac-
cess, 9:160721–160757.
Frisoni, G., Moro, G., Carlassare, G., and Carbonaro, A.
(2022). Unsupervised event graph representation and
similarity learning on biomedical literature. Sensors,
22(1):3.
Gunning, R. e. a. (1952). Technique of clear writing.
Guo, Y., Qiu, W., Wang, Y., and Cohen, T. (2021). Auto-
mated lay language summarization of biomedical sci-
entific reviews. In AAAI, pages 160–168. AAAI Press.
Huang, L., Wu, L., and Wang, L. (2020a). Knowl-
edge graph-augmented abstractive summarization
with semantic-driven cloze reward. In ACL, pages
5094–5107. Association for Computational Linguis-
tics.
Huang, L., Wu, L., and Wang, L. (2020b). Knowl-
edge graph-augmented abstractive summarization
with semantic-driven cloze reward. In ACL, pages
5094–5107. Association for Computational Linguis-
tics.
Ji, X. and Zhao, W. (2021). SKGSUM: abstractive
document summarization with semantic knowledge
graphs. In IJCNN, pages 1–8. IEEE.
Kim, J., Ohta, T., Pyysalo, S., Kano, Y., et al. (2009).
Overview of bionlp’09 shared task on event extrac-
tion. In BioNLP@HLT-NAACL (Shared Task), pages
1–9. Association for Computational Linguistics.
Kim, J., Pyysalo, S., Ohta, T., Bossy, R., Nguyen, N. L. T.,
and Tsujii, J. (2011). Overview of bionlp shared task
2011. In BioNLP@ACL (Shared Task), pages 1–6. As-
sociation for Computational Linguistics.
Kim, J.-D., Wang, Y., and Yasunori, Y. (2013). The
Genia event extraction shared task, 2013 edition -
overview. In Proceedings of the BioNLP Shared Task
2013 Workshop, pages 8–15, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.
Kincaid, J. P., Fishburne, R. P., Rogers, R. L., and Chissom,
B. S. (1975). Derivation of new readability formu-
las (automated readability index, fog count and flesch
reading ease formula) for navy enlisted personnel.
Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M., and
Hajishirzi, H. (2019). Text generation from knowl-
edge graphs with graph transformers. In NAACL-HLT
(1), pages 2284–2293. Association for Computational
Linguistics.
Landhuis, E. (2016). Scientific literature: Information over-
load. Nature, 535(7612):457–458.
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer,
L. (2020). BART: denoising sequence-to-sequence
pre-training for natural language generation, transla-
tion, and comprehension. In ACL, pages 7871–7880.
Association for Computational Linguistics.
Lin, C.-Y. (2004). ROUGE: A package for automatic evalu-
ation of summaries. In Text Summarization Branches
Enhancing Biomedical Scientific Reviews Summarization with Graph-based Factual Evidence Extracted from Papers
177