to confirm the cytotoxicity effect as some cytotoxic
mechanisms are still unclear. There are risks
associated with animal-to-human extrapolation due to
differences in metabolism and size. A first-in-human
phase 1/2a study started enrolling participates in early
2021 (Strassz, 2020). and this study aims to
determine the maximum tolerated dose and assess the
anti-tumor activity of HDP101, an ADC targeting
BCMA (B cell maturation antigen) carrying a
synthetic version of Amanitin as a payload. Future
research focusing on the mechanisms of α-Amanitin
anti-cancer effects and related clinical trials may be
required to promote the understanding of α-Amanitin
as a potential therapeutic way for cancer treatment.
REFERENCES
Arima, Y., M. Nitta, S. Kuninaka, D. Zhang, T. Fujiwara,
Y. Taya, M. Nakao, and H. Saya. (2005)
Transcriptional blockade induces p53-dependent
apoptosis associated with translocation of p53 to
mitochondria. Journal of Biological Chemistry,
280:19166-19176.
Bodero, L., P. López Rivas, B. Korsak, T. Hechler, A. Pahl,
C. Müller, D. Arosio, L. Pignataro, C. Gennari, and U.
Piarulli. (2018) Synthesis and biological evaluation of
rgd and isodgr peptidomimetic-α-amanitin conjugates
for tumor-targeting. Beilstein Journal of Organic
Chemistry, 14:407-415.
Boube, M., B. Hudry, C. Immarigeon, Y. Carrier, S.
Bernat-Fabre, S. Merabet, Y. Graba, H.-M. Bourbon,
and D.L. Cribbs. (2014) Drosophila melanogaster hox
transcription factors access the rna polymerase ii
machinery through direct homeodomain binding to a
conserved motif of mediator subunit med19. PLoS
Genetics, 10:e1004303.
Bushnell, D.A., P. Cramer, and R.D. Kornberg. (2002)
Structural basis of transcription: -amanitin-rna
polymerase ii cocrystal at 2.8 a resolution. Proceedings
of the National Academy of Sciences, 99:1218-1222.
Derheimer, F.A., H.M. O'Hagan, H.M. Krueger, S.
Hanasoge, M.T. Paulsen, and M. Ljungman. (2007)
Rpa and atr link transcriptional stress to p53.
Proceedings of the National Academy of Sciences,
104:12778-12783.
Desgrosellier, J.S. and D.A. Cheresh. (2010) Integrins in
cancer: Biological implications and therapeutic
opportunities. Nature Reviews Cancer, 10:9-22.
Dündar, Z.D.E., M.; Kilinç, I.; Çolak, T.; Oltulu, P.;
Cander, B. (2017) Dündar, z. D., ergin, m., kilinç, i.,
çolak, t., oltulu, p., cander, b. (2017). The role of
oxidative stress in α-amanitin-induced hepatotoxicityin
an experimental mouse model. Turkish Journal of
Medical Sciences, 47:318–325.
Dunkel, P. and J. Ilaš. (2021) Targeted cancer therapy using
compounds activated by light. Cancers, 13:3237.
Gallo, F., B. Korsak, C. Müller, T. Hechler, D. Yanakieva,
O. Avrutina, H. Kolmar, and A. Pahl. (2021) Enhancing
the pharmacokinetics and antitumor activity of an α-
amanitin-based small-molecule drug conjugate via
conjugation with an fc domain. Journal of Medicinal
Chemistry, 64:4117-4129.
Garcia, J., V.M. Costa, A.T.P. Carvalho, R. Silvestre, J.A.
Duarte, D.F.A.R. Dourado, M.D. Arbo, T. Baltazar,
R.J. Dinis-Oliveira, P. Baptista, M. de Lourdes Bastos,
et al. (2015) A breakthrough on amanita phalloides
poisoning: An effective antidotal effect by polymyxin
b. Archives of Toxicology, 89:2305-2323.
Gires, O., M. Pan, H. Schinke, M. Canis, and P.A. Baeuerle.
(2020) Expression and function of epithelial cell
adhesion molecule epcam: Where are we after 40
years? Cancer metastasis reviews, 39:969-987.
Hechler, T., Kulke, M., Müller, C., Pahl, A. and Anderl, J.
(2014) Poster presentation #664: amanitin-based
antibody-drug conjugates targeting the prostate-
specific membrane antigen psma. AACR Annual
Meeting.
Kume, K., M. Ikeda, S. Miura, K. Ito, K.A. Sato, Y.
Ohmori, F. Endo, H. Katagiri, K. Ishida, C. Ito, T.
Iwaya, et al. (2016) Α-amanitin restrains cancer relapse
from drug-tolerant cell subpopulations via taf15.
Scientific Reports, 6:25895.
Kwon, I., M. Kato, S. Xiang, L. Wu, P. Theodoropoulos, H.
Mirzaei, T. Han, S. Xie, J.L. Corden, and S.L.
McKnight. (2013) Phosphorylation-regulated binding
of rna polymerase ii to fibrous polymers of low-
complexity domains. Cell, 155:1049-1060.
Le Daré, B., P.-J. Ferron, and T. Gicquel. (2021) Toxic
effects of amanitins: Repurposing toxicities toward
new therapeutics. Toxins, 13.
Letschert, K., H. Faulstich, D. Keller, and D. Keppler.
(2006) Molecular characterization and inhibition of
amanitin uptake into human hepatocytes. Toxicological
Sciences, 91:140-149.
Leu, J.I.J. and D.L. George. (2007) Hepatic igfbp1 is a
prosurvival factor that binds to bak, protects the liver
from apoptosis, and antagonizes the proapoptotic
actions of p53 at mitochondria. Genes & Development,
21:3095-3109.
Lewis, J.H. and L.B. Seeff. (2020) The origins of the
modern-day study of drug hepatotoxicity: Focus on
hyman j. Zimmerman. Clinical liver disease, 15:S25-
S36.
Liu, Y., X. Zhang, C. Han, G. Wan, X. Huang, C. Ivan, D.
Jiang, C. Rodriguez-Aguayo, G. Lopez-Berestein, P.H.
Rao, D.M. Maru, et al. (2015) Tp53 loss creates
therapeutic vulnerability in colorectal cancer. Nature,
520:697-701.
Ljungman, M., F. Zhang, F. Chen, A.J. Rainbow, and B.C.
McKay. (1999) Inhibition of rna polymerase ii as a
trigger for the p53 response. Oncogene, 18:583-592.
Magdalan, J., A. Ostrowska, A. Piotrowska, I. Izykowska,
M. Nowak, A. Gomułkiewicz, M. Podhorska-Okołów,
A. Szelag, and P. Dziegiel. (2010) Alpha-amanitin
induced apoptosis in primary cultured dog hepatocytes.
Folia Histochemica et Cytobiologica, 48:58-62.