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Abstract: Stability has been considered an important property for evaluating clustering solutions. Nevertheless, there 
are no conclusive studies on the relationship between this property and the capacity to recover clusters 
inherent to data (“ground truth”). This study focuses on this relationship resorting to synthetic data 
generated under diverse scenarios (controlling relevant factors). Stability is evaluated using a weighted 
cross-validation procedure. Indices of agreement (corrected for agreement by chance) are used both to 
assess stability and external validation. The results obtained reveal a new perspective so far not mentioned 
in the literature. Despite the clear relationship between stability and external validity when a broad range of 
scenarios is considered, within-scenarios conclusions deserve our special attention: faced with a specific 
clustering problem (as we do in practice), there is no significant relationship between stability and the 
ability to recover data clusters. 

1 INTRODUCTION 

Stability has been recognized as a desirable property 
of a clustering solution – e.g., (Jain and Dubes, 
1988).  A clustering solution is said to be stable if it 
remains fairly unchanged when the clustering 
process is subject to minor modifications such as 
alternative parameterizations of the algorithm used, 
introducing noise in the data or considering different 
samples. In order to evaluate stability, the agreement 
between the different clustering results originated by 
such minor modifications should be measured. 
Several indices of agreement (IA), such as the 
adjusted Rand (Hubert and Arabie, 1985), are 
commonly used for this end. 

Some authors warn of a possible misuse of the 
property of clustering stability noting that the 
goodness of this property in the evaluation of 
clustering results is not theoretically well founded: 
“While it is a reasonable requirement that an 
algorithm should demonstrate stability in general, it 
is not obvious that, among several stable algorithms, 
the one which is most stable leads to the best 
performance” – ((Ben-David and Luxburg, 2008), 
p.1.) Bubeck et al., express a similar concern: 
“While model selection based on clustering stability 
is widely used in practice, its behavior is still not 
well-understood from a theoretical point of view”- 
((Bubeck et al., 2012), p.436). Therefore, this study 

on clustering stability aims to contribute to clarify 
the role of this property in the evaluation of 
clustering results. 

We focus on the relationship between clustering 
stability and its external validity i.e. agreement with 
“ground truth” – the true clusters’ structures that are 
“a priori” known. Our aim is to obtain new insights 
based on diverse experimental scenarios.  

We analyze diverse clustering results referred to 
540 synthetic data sets generated under 18 different 
scenarios. Synthetic data sets provide straight-
forward clustering external evaluation and enable to 
control for diverse relevant factors such as the 
number of clusters, balance and overlapping – e.g., 
(Milligan and Cooper, 1985), (Vendramin et al., 
2010),  (Chiang and Mirkin, 2010).   

2 THE PROPOSED METHOD 

2.1 Why Stability? 

Clustering stability, along with cohesion-separation, 
are commonly referred as a desirable properties of a 
clustering solution.   

Cohesion-separation is intrinsically related with 
the concept of clustering and it can be related with 
the clusters' external validity - Milligan and Cooper 
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(Milligan and Cooper, 1985) and Vendramin 
(Vendramin et al., 2010). 

The value of stability is clearly related with the 
need to provide a useful clustering solution, since an 
inconsistent one would hardly serve practical 
purposes. On the other hand, the theoretical value of 
stability is yet to be understood. 

Literature contributions on stability are discussed 
in Luxburg (Luxburg, 2009) and Ben-David and 
Luxburg (Ben-David and Luxburg, 2008), for 
example. These are specifically related with the 
capacity to recover the "right" number of clusters 
and to K-Means results. Another perspective of 
stability is offered in (Hennig, 2007) by measuring 
the consistency with which a particular cluster 
appears in replicated clustering - cluster-wise 
stability.  

The lack of a systematical relationship between 
clusters validity and stability is occasionally pointed 
out by diverse studies - e.g., (Cardoso et al., 2010). 
Thus, a systematical study of the relationship 
between stability and clustering external validity is 
in order. 

2.2 Cross-Validation 

In order to evaluate clustering stability cross-
validation can be used. Cross-validation referred to 
unsupervised analysis is described in (McIntyre and 
Blashfield, 1980). 

In this work we resort to the weighted cross-
validation procedure proposed in (Cardoso et al., 
2010) to evaluate the stability of clustering 
solutions–see Table 1. 

Table 1: Weighted cross-validation procedure. 

Step Action Output 
1 Perform training-test 

sample split 
Weighted training 
and test samples 

2 Cluster weighted 
training sample 

Clusters in the 
weighted training 
sample 

3 Cluster weighted test 
sample 

Clusters in the 
weighted test sample 

4 Obtain a contingency 
table between clusters 
obtained in 2. and 3. 

Indices of d 
agreement values, 
indicators of stability 

The “weighted training sample” considers unit 
weights for training observations (50% in the data 
sets considered)  and almost zero weights to the 
remaining (test) observations. The “weighted test 
sample” reverses this weights’ allocation. The use of 

weighted samples overcomes the need for selecting a 
classifier when performing cross-validation. 
Furthermore, sample dimension is not a severe 
limitation for implementing clustering stability 
evaluation, since the Indices of agreement values are 
based on the entire (weighted) sample, and not in a 
holdout sample. 

2.3 Adjusted Agreement between 
Partitions 

In order to measure the agreement between two 
partitions we can resort to indices of agreement (ܣܫ). 

In the literature, multiple ܣܫ can be found – e.g., 
(Vinh et al., 2010), (Warrens, 2008). They are 
generally quantified based on the cells values of the 
contingency table ൣ݊௞௤൧	between the two partitions ܲ௄  and ܲொ  being compared with ܭ  and ܳ  clusters 
(respectively) - and on the corresponding row totals ݊௞ା and column totals ݊ା௤. 

Among the ܣܫ , the Rand index  (ܴܽ݊݀ ) is, 
perhaps, the most well-known - (Rand, 1971).  ܴܽ݊݀ሺ ூܲ௄, ூܲூ௄ሻ ൌቀ௡ଶቁାଶ∑ ∑ ቀ௡ೖ೜ଶ ቁି∑ ቀ௡ೖశଶ ቁି∑ ቀ௡శ೜ଶ ቁೂ೜సభೖ಼సభೂ೜సభೖ಼సభ ቀ௡ଶቁ (1) 

It quantifies the proportion of all pairs of ݊ 
observations that both partitions ( ூܲ௄ and ூܲூ௄) agree 
to join in a group or to separate into different groups. 
Since agreement between partitions can occur by 
chance, (Hubert and Arabie, 1985) propose an 
adjusted version of ܴܽ݊݀  using its expected value 
under the hypothesis of agreement by chance (ܪ௢): ܧுబ ቂ∑ ∑ ቀ݊௞௤2 ቁொ௤ୀଵ௄௞ୀଵ ቃ ൌ∑ ቀ௡ೖశଶ ቁൈ∑ ቀ௡శ೜ଶ ቁೂ೜సభೖ಼సభ ቀ௡ଶቁ 	 (2) 

Then this ܣܫ is adjusted according with the general 
formula: ܣܫ௔ሺܲ௄, ܲொሻ ൌൌ ,ሺܲ௄ܣܫ ܲொሻ െ ,ሺܲ௄ܣܫு଴ሾܧ ܲொሻሿݔܽܯሾܣܫሺܲ௄, ܲொሻሿ െ ,ሺܲ௄ܣܫு଴ሾܧ ܲொሻሿ (3) 

The adjusted index ( ௔ሻܣܫ  is thus null when 
agreement between partitions occurs by chance. 
Some ܣܫ  are based on the concepts of entropy and 
information. Among these ܣܫ , Mutual Information 
 :is particularly well-known (ܫܯ)

,ሺܲ௄ܫܯ ܲொሻ ൌ ෍෍݊௞௤݊ log	൭ ݊௞௤௡ೖశ௡శ೜௡ ൱ொ
௤ୀଵ

௄
௞ୀଵ  (4) 
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(Vinh et al., 2010) advocate a strategy similar to 
that of Hubert and Arabie, (Hubert and Arabie, 
1985), to adjust ܫܯ  for agreement by chance. These 
authors also advocate the use of a particular mutual 
information form resorting to joint entropy ܪሺܲ௄, ܲொሻ  – ((Horibe, 1985), ((Kraskov et al., 
,ሺܲ௄ܪܫܯ :((2005 ܲொሻ ൌ ,ሺܲ௄ܫܯ ܲொሻ/ܪሺܲ௄, ܲொሻ (5) 

where  

,ሺܲ௄ܪ ܲொሻ ൌ െ෍෍݊௞௤݊ log	ቀ݊௞௤݊ ቁொ
௤ୀଵ

௄
௞ୀଵ  (6) 

In this work we use the adjusted indices ܴܽ݊݀௔ሺܲ௄, ܲொሻ  and ܪܯܫ௔ሺܲ௄, ܲொሻ	  to investigate 
agreement between two partitions. They offer 
different perspectives on agreement – paired 
agreement and simple agreement (Cardoso, 2007). 
These views are meant to provide useful insights 
when referring to external validation (comparison 
between the clustering solution and the “true” cluster 
structure) or to the evaluation of stability 
(comparison between two clustering solutions 
deriving from minor modifications in the clustering 
process). 

3 NUMERICAL EXPERIMENTS 

The pioneer study of Milligan and Cooper, (Milligan 
and Cooper, 1985), established the use of synthetic 
data to support the external validation of clustering 
structures. In this general setting, clustering 
solutions are to be compared with a priori known 
classes associated with the generated data sets. Since 
then, several works referring to external validation 
of clustering solutions have developed this line of 
work trying to overcome some drawbacks of this 
first study such as using the “right number of 
clusters” to quantify external validity is limited in 
scope, (Vendramin et al., 2010). Also, overlap 
between clusters should be properly quantified on 
the generation of experimental data sets (Steinley 
and Henson, 2005).   

The present research considers three main design 
factors for the generation of synthetic data sets:  

1. balanced  (1- clusters are balanced having equal 
or very similar numbers of observations; 2- 
clusters are unbalanced) 

2. number of clusters (K=2, 3,4) 
3. clusters separation (1- poor; 2-moderate; 3- good) 

The 18 resulting scenarios are named after the 
previous coding – for example, the scenario with 
balanced clusters (1), 3 clusters (3) and moderate 
separation (2) is termed “132”. 

The first design factor is operationalized as 
follows: balanced settings have classes with similar 
dimensions and for unbalanced settings classes have 
the following a priori probabilities or weights:  
a) 0.30 and 0.7 when K=2; b) 0.6, 0.3 and 0.1 when 
K=3; c) 0.5, 0.25, 0.15 and 0.10 when K=4.  

The increasing number of clusters is associated 
with increasing number of variables (2, 3 and 4 
latent groups with 2, 3 and 4 Gaussian distributed 
variables) and, in order to deal with this increasing 
complexity, we consider data sets with 500, 800 and 
1100 observations, respectively. 

The following measure of overlap between 
cluster is adopted, (Maitra and Melnykov, 2010): ߱௞௞ᇱ ൌ ߱௞|௞ᇱ ൅ ߱௞ᇲ|௞ (7) 

where ߱୩ᇲ|୩	is the misclassification probability that 
the random variable ܺ originated from the kth 
component is mistakenly assigned to the k’th 

component and ߱୩|୩ᇱ is defined similarly. 

In order to generate the datasets within the 
scenarios, we capitalize on the recent contribution in  
(Maitra and Melnykov, 2010) and use the R MixSim 
package to generate structured data  according to the 
finite Gaussian mixture model: gሺxሻ ൌ෍λ୩ϕሺx;	μ୩, Σ୩ሻ୏

୩ୀଵ  (8) 

where ߶ሺݔ; ,௞ߤ Σ௞ሻ is a multivariate Gaussian 

density of the kth component with mean 
vector	ߤ௞ and covariance matrix Σ௞. Therefore ω୩ᇱ|୩ ൌ ܲ ቂλ୩ᇲϕ ቀx;	μ୩ᇲ, Σ୩ᇲቁ ൐λ୩ϕቀx; ,௞ߤ Σ୩ቁ ~	ݔ| ௣ܰ ቀμ୩, Σ୩ቁቃ  

(9) 

Based on this measure, we consider three degrees 
of overlap in the experimental scenarios: 1) ω୩୩ᇱ is 
around 0.6 for poorly separated clusters; 2)  ω୩୩ᇱ is 
around 0.15 for moderately separated; 3)  ω୩୩ᇱ  is 
around 0.02 for well separated classes (these 
thresholds are indicated in (Maitra and Melnykov, 
2010)).  

For each of the referred 18 scenarios, we 
generate 30 datasets and run our experiments by:  

− clustering each data set; 
− evaluating stability of the clustering 

solution (see 2.1 and 0); 
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− evaluating clustering external validity 
based on the a priori known classes (see 0); 

− correlating results from stability and 
external validity to assess the role of the 
stability property. 

The Rmixmod package is used for clustering 
purposes (Lebret et al., 2012). EM algorithm is 
found to be particularly suited for the clustering 
tasks at hand, since the data generated follow a finite 
Gaussian mixture model. We use the general 
Gaussian mixture model - [PKLKCK] in (Biernacki et 
al., 2006). 

The first results obtained are summarized in 
Table 2 and Table 3. They reveal the pertinence of 
the design factors, the overlap measure in particular: 
stability and external validity increase with the 
increase in separation, the ܣܫ  being close to zero 
when separation is poor and near one when well 
separated clusters are considered.  In general, the 
adjusted Rand index and normalized mutual 
information values illustrate the same underlying 
reality, although the MIHୟ	 values provide a more 
conservative view of the degree of agreement 
between two partitions.  

The general results referring to the relationship 
between stability and agreement with ground truth 
(inter experimental scenarios) are illustrated in 
Figure 1 and Figure 2. The corresponding Pearson 
correlation values are 0.958 and 0.933, respectively, 
 

indicating a high linear correlation between stability 
and external validity (both measured by ܪܫܯ௔	 in 
Figure 1 and  ܴܽ݊݀௔ 	in	 Figure 2). These results 
corroborate the general theory on the relevance of 
the property of stability in the evaluation of 
clustering solutions. 

 

Figure 1: Inter-scenarios Pearson correlation between 
stability (yy’) and agreement with ground truth (xx’): the MIHୟ perspective.  

Table 2: Adjusted Rand index values corresponding to external validity and to stability (values averaged over 30 datasets). Randୟ Separation 
External validity Stability 

K=2 K=3 K=4 K=2 K=3 K=4 

Balanced 

Poor 0.055 0.038 0.041 0.111 0.118 0.085 

Moderate 0.728 0.388 0.624 0.865 0.652 0.688 

Good 0.963 0.943 0.855 0.987 0.979 0.918 

Unbalanced 

Poor 0.097 0.211 0.133 0.053 0.280 0.166 

Moderate 0.765 0.690 0.820 0.864 0.822 0.898 

Good 0.962 0.980 0.887 0.981 0.991 0.949 

Table 3: Normalized mutual information adjusted values corresponding to external validity and to stability (values averaged 
over 30 datasets). MIHୟ Separation 

External validity Stability 

K=2 K=3 K=4 K=2 K=3 K=4 

Balanced 

Poor 0.046 0.024 0.031 0.073 0.054 0.073 

Moderate 0.458 0.263 0.449 0.700 0.465 0.578 

Good 0.865 0.832 0.707 0.949 0.931 0.833 

Unbalanced 

Poor 0.048 0.093 0.070 0.036 0.189 0.124 

Moderate 0.477 0.440 0.569 0.660 0.613 0.732 

Good 0.850 0.920 0.694 0.922 0.957 0.840 
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Table 4: Intra-scenarios Pearson correlations between stability and agreement with ground truth for synthetic data. 

 
Separation 

MIHୟ Randୟ 

K=2 K=3 K=4 K=2 K=3 K=4 

Balanced 

Poor 0.143 -0.018 -0.129 -0.079 -0.155 -0.303 

Moderate 0.122 0.264 -0.015 0.068 0.215 0.111 

Good 0.084 0.222 0.527 0.046 0.177 0.624 

Unbalanced 

Poor 0.329 0.126 0.172 0.367 -0.42 -0.079 

Moderate -0.003 0.593 0.084 0.085 0.666 0.084 

Good -0.151 0.272 0.245 -0.084 0.159 0.218 

 
A completely different view is however provided 

intra-scenarios were very low correlations between 
stability and external validity are obtained – see Table 
4. Within a specific scenario - the “real deal” for any 
clustering analysis practitioner - the correlation 
between external validity and stability is negligible. 
Both ܴܽ݊݀௔ሺܲ௄, ܲொሻ and ܪܫܯ௔ሺܲ௄, ܲொሻ	 lead to the 
same conclusion. Only two exceptions contradict this 
rule: scenarios “232” and “143”. 

 

Figure 2: Inter-scenarios Pearson correlation between 
stability (yy’) and agreement with ground truth (xx’): the Randୟ	perspective. 

4 CONTRIBUTIONS AND 
PERSPECTIVES 

In this work we analyze the pertinence of using 
stability in the evaluation of a clustering solution. In 
particular, we question the following: does the 

consistency of a clustering solution (resisting minor 
modifications of the clustering process) provide 
indication towards a greater agreement with the 
“ground truth” (true structure) of the data? 

In order to address this issue, we design an 
experiment in which 540 synthetic data sets are 
generated under 18 different scenarios. Design factors 
considered are the number of clusters, their balance 
and overlap. In addition, different sample sizes and 
space dimensions are considered.  

Through the use of weighted cross-validation, we 
enable the analysis of stability, (Cardoso et al., 2010). 
We resort to adjusted indices of agreement (excluding 
agreement by chance) to measure agreement between 
two clustering solutions and also between a clustering 
solution and the “true” classes: we specifically use a 
simple index of agreement  - the adjusted normalized 
Mutual Information, (Vinh et al., 2010) - and a paired 
one  - the adjusted Rand índex (Hubert and Arabie, 
1985).  

A macro-view of the results does not contradict 
the current theory - there is a strong correlation 
between stability and external validity when the 
aggregate results are considered (all scenarios’ 
results).  

However, when it comes to perform clustering 
analysis within a specific experimental scenario, what 
can we say about the same correlation? The 
conclusions derived in this case support the 
previously referred concerns – there is an 
insignificant correlation between stability and 
external validity when it comes to a specific 
clustering problem. 

Of course, it is still true that an unstable solution 
is, for this very reason, undesirable: then, which 
results should the practitioner consider? However, in 
a specific clustering setting, there is clearly no 
credible link between the stability of a partition and 
its approximation to ground truth. 

This work contributes with a new perspective for 
a better understanding of the relationship between 
clustering stability and its external validity. To our 
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knowledge, is the first time a study distinguishes 
between the macro view (all experimental scenarios 
considered) and the micro view (considering a 
specific clustering problem) and clearly differentiates 
the corresponding results.  

In the future, stability results in discrete clustering 
should also be assessed and possible additional 
experimental factors also considered (e.g., the 
clusters’ entropy). 

In the future, clustering stability results in real 
data sets should also be assessed. 
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