DIGITAL PATHOLOGY ASSOCIATION. (2020). Whole 
Slide Imaging Repository.  https://digitalpatholo 
gyassociation.org/whole-slide-i maging-repository 
Duma,  N.,  Santana-Davila,  R.,  &  Molina,  J.  R.  (2019). 
Non–Small  Cell  Lung  Cancer:  Epidemiology, 
Screening,  Diagnosis,  and  Treatment.  Mayo Clinic 
Proceedings,  94(8),  1623–1640.  https://doi.org/ 
10.1016/j.may ocp.2019.01.013 
El-Baz,  A.,  Beache,  G.  M.,  Gimel’Farb,  G.,  Suzuki,  K., 
Okada, K., Elnakib, A., Soliman, A., & Abdollahi, B. 
(2013).  Computer-aided  diagnosis  systems  for  lung 
cancer: Challenges and methodologies. In International 
Journal of Biomedical Imaging (Vol. 2013). https://doi. 
org/10.1155/2013/942353 
Friedman,  N.,  Geiger,  D.,  &  Goldszmidt,  M.  (1997). 
Bayesian  Network  Classifiers.  Machine Learning, 
29(2–3),  131–163.  https://doi.org/10.1023/a:100746 
5528199 
GDC.  (n.d.).  Retrieved  July  10,  2021,  from 
https://portal.gdc.cancer.gov/ 
Goebel,  C.,  Louden,  C.  L.,  McKenna,  R.,  Onugha,  O., 
Wachtel,  A.,  &  Long,  T.  (2019).  Diagnosis  of  Non-
small Cell Lung Cancer for Early Stage Asymptomatic 
Patients.  Cancer Genomics and Proteomics,  16(4), 
229–244. https://doi.org/10. 21873/cgp.20128 
Greenfield, D.  (2019). Artificial Intelligence in Medicine: 
Applications, implications, and limitations - Science in 
the News.  https://sitn.hms.harvard.edu/flash/2019/ 
artificial-intelligence-in-medicine-applications-implica 
tions-and-limitations/?web=1&wdLOR=c5DCD23 86-
04EB-463E-86FD-48BACB362747 
Hanna,  M.  G.,  Parwani,  A.,  &  Sirintrapun,  S.  J.  (2020). 
Whole Slide Imaging: Technology and Applications. In 
Advances in Anatomic Pathology (Vol. 27, Issue 4, pp. 
251–259).  Lippincott  Williams  and  Wilkins.  https:// 
doi.org/10.1097/PAP.0000000000000273 
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual 
learning  for  image  recognition.  Proceedings of the 
IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition, 2016-Decem, 770–778. https:// 
doi.org/10.1109/CVPR.2016.90 
Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. 
M.,  Schaffer,  J.  L.,  Krebs,  V.  E.,  Spitzer,  A.  I.,  & 
Ramkumar,  P.  N.  (2020).  Machine  Learning  and 
Artificial  Intelligence:  Definitions,  Applications,  and 
Future  Directions.  In  Current Reviews in 
Musculoskeletal Medicine (Vol. 13, Issue 1, pp. 69–76). 
Springer. https://doi.org/10.1007/s12178-020-09600-8 
Iandola,  F.  N.,  Han,  S.,  Moskewicz,  M.  W.,  Ashraf,  K., 
Dally,  W.  J.,  &  Keutzer,  K.  (2016).  SqueezeNet: 
AlexNet-level accuracy with 50x fewer parameters and 
<0.5MB model size. http://arxiv.org/abs/1602.07360 
Keith,  R.  L.  (2020).  Lung Carcinoma. 
https://www.merckmanuals.com/professional/pulmona
ry-disorders/tumors-of-the-lungs/lung-carcinoma 
Kleczek,  P.,  Jaworek-Korjakowska,  J.,  &  Gorgon,  M. 
(2020). A novel method for tissue segmentation in high-
resolution  H&E-stained  histopathological  whole-slide 
images. Computerized Medical Imaging and Graphics
, 
79,  101686.  https://doi.org/10.1016/j.compmedimag 
.2019.101686 
Krizhevsky,  A.,  Sutskever,  I.,  &  Hinton,  G.  E.  (2017). 
ImageNet classification with deep convolutional neural 
networks. Communications of the ACM, 60(6), 84–90. 
https://doi.org/10.1145/3065386 
Li, Z., Hu, Z., Xu, J., Tan, T., Chen, H., Duan, Z., Liu, P., 
Tang, J., Cai, G., Ouyang, Q., Tang, Y., Litjens, G., & 
Li,  Q.  (2018).  Computer-aided diagnosis of lung 
carcinoma using deep learning - a pilot study. 
http://arxiv.org/abs/1803.05471 
Liaw,  A.,  &  Wiener,  M.  (2002).  Classification  and 
Regression  by  randomForest.  R News,  2(3),  18–22. 
http://www.stat.berkeley.edu/ 
Nasim,  F.,  Sabath,  B.  F.,  &  Eapen,  G.  A.  (2019).  Lung 
Cancer. In Medical Clinics of North America (Vol. 103, 
Issue  3,  pp.  463–473).  W.B.  Saunders.  https:// 
doi.org/10.1016/j.mcna.2018.12.006 
Pavlisko,  E.  N.,  &  Roggli,  V.  L.  (2020).  Lung  cancer: 
Clinical findings, pathology, and exposure assessment. 
In  Occupational Cancers  (pp.  205–226).  Springer 
International  Publishing.  https://doi.org/10.1007/978-
3-030-30766-0_10 
Pulmão,  F.  P.  do.  (2017).  Que tipo de tumor é? 
https://www.fundacaoportuguesadopulmao.org/apoio-
ao-doente/cancro-do-pulmao/que-tipo-de-tumor-e/?sba 
ck#462 
Russell, S., & Norvig, P. (2021).  Artificial intelligence: a 
modern approach (4 (Ed.)). 
Society,  A.  C.  (2021).  Key Statistics for Lung Cancer. 
https://www.cancer.org/cancer/lung-cancer/about/key-
statistics.html 
Strobl,  C.,  Boulesteix,  A.  L.,  Kneib,  T.,  Augustin,  T.,  & 
Zeileis, A. (2008). Conditional variable importance for 
random  forests.  BMC Bioinformatics,  9(1),  1–11. 
https://doi.org/10.1186/1471-2105-9-307 
Szegedy,  C.,  Liu,  W.,  Jia,  Y.,  Sermanet,  P.,  Reed,  S., 
Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, 
A. (2015). Going deeper with convolutions. Proceedings 
of the IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition,  07-12-June,  1–9. 
https://doi.org/10.1109/CVPR.2015.7298594 
The Global Cancer Observatory. (2020). Portugal Source: 
Globocan Incidence, Mortality and Prevalence by 
cancer site. 
Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A. H., 
&  Israel,  B.  (2016).  Deep Learning for Identifying 
Metastatic Breast Cancer.  https://arxiv.org/abs/1606. 
05718v1 
Wang, S., Chen, A., Yang, L., Cai, L., Xie, Y., Fujimoto, J., 
Gazdar, A., & Xiao, G. (2018). Comprehensive analysis 
of  lung  cancer  pathology  images  to  discover  tumor 
shape  and  boundary  features  that  predict  survival 
outcome.  Scientific Reports,  8(1),  1–9.  https:// 
doi.org/10.1038/s41598-018-27707-4 
Wang, S., Wang, T., Yang, L., Yang, D. M., Fujimoto, J., 
Yi, F., Luo, X., Yang, Y., Yao, B., Lin, S. Y., Moran, 
C.,  Kalhor,  N.,  Weissferdt,  A.,  Minna,  J.,  Xie,  Y., 
Wistuba, I. I., Mao, Y., & Xiao, G. (2019). ConvPath: 
A  software  tool  for  lung  adenocarcinoma  digital