sufficently computationally efficient to allow the ex-
ecution of further software on the onboard computer.
Software optimizations should allow the use of multi-
ple detectors, leading to an improved mapping result.
Our approach achieves satisfying results in the
real world evaluation. Nevertheless, the data associa-
tion for semantic mapping could be improved by us-
ing semantic information, e.g., presented in (Doherty
et al., 2020) . In addition, more object attributes, like
uncertainties (Hiller et al., 2018), could be integrated.
Further, we plan to investigate our approach using ob-
ject detectors with higher accuracy.
ACKNOWLEDGEMENTS
This work was developed within the project
”AIRKom” funded by the Forschungsgemeinschaft
Intralogistik / Foerdertechnik und Logistiksysteme
(IFL) e.V.
REFERENCES
Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B.
(25.09.2016 - 28.09.2016). Simple online and real-
time tracking. In 2016 IEEE International Conference
on Image Processing (ICIP), pages 3464–3468. IEEE.
Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M.
(23.04.2020). Yolov4: Optimal speed and accuracy
of object detection.
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza,
D., Neira, J., Reid, I., and Leonard, J. J. (2016). Past,
present, and future of simultaneous localization and
mapping: Toward the robust-perception age. IEEE
Transactions on Robotics, 32(6):1309–1332.
Doherty, K. J., Baxter, D. P., Schneeweiss, E., and Leonard,
J. J. (31.05.2020 - 31.08.2020). Probabilistic data
association via mixture models for robust semantic
slam. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 1098–1104.
IEEE.
Grinvald, M., Furrer, F., Novkovic, T., Chung, J. J., Ca-
dena, C., Siegwart, R., and Nieto, J. (2019). Volu-
metric instance-aware semantic mapping and 3d ob-
ject discovery. IEEE Robotics and Automation Let-
ters, 4(3):3037–3044.
Hiller, M., Particke, F., Hofmann, C., Bey, H., and Thi-
elecke, J. (19.07.2018 - 23.07.2018). World modeling
for mobile platforms using a contextual object-based
representation of the environment. In 2018 IEEE 8th
Annual International Conference on CYBER Technol-
ogy in Automation, Control, and Intelligent Systems
(CYBER), pages 187–191. IEEE.
Hofmann, C., Particke, F., Hiller, M., and Thielecke, J.
(25.02.2019 - 27.02.2019). Object detection, classi-
fication and localization by infrastructural stereo cam-
eras. In Proceedings of the 14th International Joint
Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications, pages 808–
815. SCITEPRESS - Science and Technology Publi-
cations.
Kalinov, I., Petrovsky, A., Ilin, V., Pristanskiy, E.,
Kurenkov, M., Ramzhaev, V., Idrisov, I., and Tset-
serukou, D. (2020). Warevision: Cnn barcode
detection-based uav trajectory optimization for au-
tonomous warehouse stocktaking. IEEE Robotics and
Automation Letters, 5(4):6647–6653.
Koch, T., K
¨
orner, M., and Fraundorfer, F. (2019). Auto-
matic and semantically-aware 3d uav flight planning
for image-based 3d reconstruction. Remote Sensing,
11(13):1550.
Labb
´
e, M. and Michaud, F. (2019). Rtab-map as an open-
source lidar and visual simultaneous localization and
mapping library for large-scale and long-term online
operation. Journal of Field Robotics, 36(2):416–446.
Lieret, M., Kogan, V., Doll, S., and Franke, J. (22.08.2019
- 26.08.2019). Automated in-house transportation of
small load carriers with autonomous unmanned aerial
vehicles. In 2019 IEEE 15th International Confer-
ence on Automation Science and Engineering (CASE),
pages 1010–1015. IEEE.
Maturana, D., Arora, S., and Scherer, S. (24.09.2017 -
28.09.2017). Looking forward: A semantic mapping
system for scouting with micro-aerial vehicles. In
2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 6691–6698.
IEEE.
Mccormac, J., Clark, R., Bloesch, M., Davison, A., and
Leutenegger, S. (05.09.2018 - 08.09.2018). Fusion++:
Volumetric object-level slam. In 2018 International
Conference on 3D Vision (3DV), pages 32–41. IEEE.
Nakajima, Y. and Saito, H. (2019). Efficient object-oriented
semantic mapping with object detector. IEEE Access,
7:3206–3213.
Rosen, D. M., Mason, J., and Leonard, J. J. (16.05.2016
- 21.05.2016). Towards lifelong feature-based map-
ping in semi-static environments. In 2016 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 1063–1070. IEEE.
Rusu, R. B. and Cousins, S. (09.05.2011 - 13.05.2011). 3d
is here: Point cloud library (pcl). In 2011 IEEE In-
ternational Conference on Robotics and Automation,
pages 1–4. IEEE.
Solovyev, R., Wang, W., and Gabruseva, T. (2021).
Weighted boxes fusion: Ensembling boxes from dif-
ferent object detection models. Image and Vision
Computing, 107:104117.
Sunderhauf, N., Pham, T. T., Latif, Y., Milford, M.,
and Reid, I. (24.09.2017 - 28.09.2017). Meaning-
ful maps with object-oriented semantic mapping. In
2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 5079–5085.
IEEE.
Yi, K. M., Yun, K., Kim, S. W., Chang, H. J., and Choi, J. Y.
(23.06.2013 - 28.06.2013). Detection of moving ob-
jects with non-stationary cameras in 5.8ms: Bringing
motion detection to your mobile device. In 2013 IEEE
Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 27–34. IEEE.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
810