Abreu, M., Bota, P., Liu, H., Schultz, T., and Gam-
boa, H. (2020). Tsfel: Time series feature extraction
library. SoftwareX, 11:100456.
Black, P. E. (2004). Euclidean distance.
https://www.nist.gov/dads/HTML/euclidndstnc.html.
Accessed: 2021-08-28.
Black, P. E. (2019). Manhattan distance. https://www.nist.
gov/dads/HTML/manhattanDistance.html. Accessed:
2021-09-07.
Bueno-Notivol, J., Gracia-Garc
´
ıa, P., Olaya, B., Lasheras,
I., L
´
opez-Ant
´
on, R., and Santab
´
arbara, J. (2021).
Prevalence of depression during the COVID-19 out-
break: A meta-analysis of community-based studies.
International Journal of Clinical and Health Psychol-
ogy, 21(1):100196.
Chaudhary, S. and Sharma, D. K. (2018). Gender Identi-
fication based on Voice Signal Characteristics. Pro-
ceedings - IEEE 2018 International Conference on
Advances in Computing, Communication Control and
Networking, ICACCCN 2018, pages 869–874.
Costantini, G., Parada-Cabaleiro, E., and Casali, D. (2021).
Automatic Emotion Recognition from DEMoS Cor-
pus by Machine Learning Analysis of Selected Vocal
Features. In 14th International Joint Conference on
Biomedical Engineering Systems and Technoloies.
Dash (2021). Dash for Python Documentation — Plotly.
https://dash.plotly.com/introduction. Accessed: 2021-
02-09.
Faek, F. (2015). Objective Gender and Age Recognition
from Speech Sentences. Aro, The Scientific Journal of
Koya University, 3(2):24–29.
Feurer, M. and Hutter, F. (2019). Hyperparameter Opti-
mization, pages 3–33. Springer International Publish-
ing, Cham.
He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). ADASYN:
Adaptive synthetic sampling approach for imbalanced
learning. Proceedings of the International Joint Con-
ference on Neural Networks, pages 1322–1328.
JotForm (2021). Free online form builder & form creator —
jotform. https://www.jotform.com/. Accessed: 2021-
08-17.
J
´
unior, J. D. R. (2017). Reconhecimento autom
´
atico de
emoc¸
˜
oes atrav
´
es da voz. PhD thesis, Universidade
Federal de Santa Catarina.
Kramer, O. (2013). K-Nearest Neighbors. In Dimensional-
ity Reduction with Unsupervised Nearest Neighbors,
volume 51, pages 13–23. Springer, Berlin, Heidel-
berg.
Kraus, M. W. (2017). Supplemental Material for Voice-
Only Communication Enhances Empathic Accuracy.
American Psychologist, 72(7):644–654.
Lema
ˆ
ıtre, G., Nogueira, F., and Aridas, C. K. (2017).
Imbalanced-learn: A python toolbox to tackle the
curse of imbalanced datasets in machine learning.
Journal of Machine Learning Research, 18(17):1–5.
Liu, Y., Wang, Y., and Zhang, J. (2012). New Ma-
chine Learning Algorithm: Random Forest. LNCS,
7473:246–252.
Lyons, J. (2013). Welcome to python speech features’s
documentation! — python speech features 0.1.0 doc-
umentation. https://python-speech-features.readthe
docs.io/en/latest/#. Accessed: 2021-09-08.
Mamyrbayev, O., Mekebayev, N., Turdalyuly, M., Os-
hanova, N., Ihsan Medeni, T., and Yessentay, A.
(2020). Voice Identification Using Classification Al-
gorithms. In Intelligent System and Computing, chap-
ter Voice Iden, pages 1–13. IntechOpen.
Nighania, K. (2018). Various ways to evaluate a machine
learning model’s performance.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Salari, N., Hosseinian-Far, A., Jalali, R., Vaisi-Raygani, A.,
Rasoulpoor, S., Mohammadi, M., Rasoulpoor, S., and
Khaledi-Paveh, B. (2020). Prevalence of stress, anxi-
ety, depression among the general population during
the COVID-19 pandemic: a systematic review and
meta-analysis. Globalization and Health, 16(1):57.
Satterfield, J. M. (2017). The Iceberg—Visible and
Hidden Identity. https://www.thegreatcoursesdaily.
com/visible-and-hidden-identity/. Accessed: 2021-
08-24.
Tang, F., Liang, J., Zhang, H., Kelifa, M. M., He, Q., and
Wang, P. (2021). COVID-19 related depression and
anxiety among quarantined respondents. Psychology
& Health, 36(2):164–178.
Tsukerman, E. (2019). Machine Learning for Cybersecurity
Cookbook. Packt.
Witten, I. and Frank, E. (2005). Data Mining: Practical
Machine Learning Tools and Techniques. Elsevier,
second edition.
Zhao, H. and Wang, P. (2019). A short review of age and
gender recognition based on speech. In 2019 IEEE 5th
Intl Conference on Big Data Security on Cloud (Big-
DataSecurity), IEEE Intl Conference on High Perfor-
mance and Smart Computing, (HPSC) and IEEE Intl
Conference on Intelligent Data and Security (IDS),
pages 183–185.
Prediction of Personal Characteristics and Emotional State based on Voice Signals using Machine Learning Techniques
149