Bora, A., Jalal, A., Price, E., and Dimakis, A. G. (2017).
Compressed sensing using generative models. arXiv
preprint arXiv:1703.03208.
Candes, E. and Tao, T. (2005). Decoding by linear program-
ming. arXiv preprint math/0502327.
Cand
`
es, E. J., Romberg, J., and Tao, T. (2006). Ro-
bust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information.
IEEE Transactions on information theory, 52(2):489–
509.
Candes, E. J., Romberg, J. K., and Tao, T. (2006). Sta-
ble signal recovery from incomplete and inaccurate
measurements. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Insti-
tute of Mathematical Sciences, 59(8):1207–1223.
Chen, M., Silva, J., Paisley, J., Wang, C., Dunson, D., and
Carin, L. (2010). Compressive sensing on manifolds
using a nonparametric mixture of factor analyzers: Al-
gorithm and performance bounds. IEEE Transactions
on Signal Processing, 58(12):6140–6155.
Chollet, F. (2015). keras. https://github.com/
fchollet/keras.
Donoho, D. L. et al. (2006). Compressed sensing. IEEE
Transactions on information theory, 52(4):1289–
1306.
Fan, K., Wei, Q., Carin, L., and Heller, K. A. (2017).
An inner-loop free solution to inverse problems using
deep neural networks. Advances in Neural Informa-
tion Processing Systems, 30:2370–2380.
Foucart, S. and Rauhut, H. (2017). A Mathematical Intro-
duction to Compressive Sensing.
Gonz
´
alez, M., Almansa, A., and Tan, P. (2021). Solving
inverse problems by joint posterior maximization with
autoencoding prior. arXiv preprint arXiv:2103.01648.
Guo, B., Han, Y., and Wen, J. (2019). Agem: Solving linear
inverse problems via deep priors and sampling. vol-
ume 32, pages 547–558.
Gupta, H., Jin, K. H., Nguyen, H. Q., McCann, M. T., and
Unser, M. (2018). Cnn-based projected gradient de-
scent for consistent ct image reconstruction. IEEE
transactions on medical imaging, 37(6):1440–1453.
Heckel, R. and Hand, P. (2018). Deep decoder: Concise im-
age representations from untrained non-convolutional
networks. arXiv preprint arXiv:1810.03982.
Hou, X., Shen, L., Sun, K., and Qiu, G. (2017). Deep fea-
ture consistent variational autoencoder. In 2017 IEEE
Winter Conference on Applications of Computer Vi-
sion (WACV), pages 1133–1141. IEEE.
Jagatap, G. and Hegde, C. (2019). Algorithmic guarantees
for inverse imaging with untrained network priors. In
Advances in Neural Information Processing Systems,
pages 14832–14842.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/.
Liu, D., Wen, B., Liu, X., Wang, Z., and Huang, T. S.
(2017). When image denoising meets high-level vi-
sion tasks: A deep learning approach. arXiv preprint
arXiv:1706.04284.
Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep
learning face attributes in the wild. In Proceedings
of the IEEE international conference on computer vi-
sion, pages 3730–3738.
Mardani, M., Sun, Q., Donoho, D., Papyan, V., Monajemi,
H., Vasanawala, S., and Pauly, J. (2018). Neural prox-
imal gradient descent for compressive imaging. In
Advances in Neural Information Processing Systems,
pages 9573–9583.
Meinhardt, T., Moller, M., Hazirbas, C., and Cremers, D.
(2017). Learning proximal operators: Using denois-
ing networks for regularizing inverse imaging prob-
lems. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1781–1790.
Metzler, C., Mousavi, A., and Baraniuk, R. (2017). Learned
d-amp: Principled neural network based compressive
image recovery. In Advances in Neural Information
Processing Systems, pages 1772–1783.
Mousavi, A. and Baraniuk, R. G. (2017). Learning to
invert: Signal recovery via deep convolutional net-
works. In 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP),
pages 2272–2276. IEEE.
Mousavi, A., Dasarathy, G., and Baraniuk, R. G. (2017).
Deepcodec: Adaptive sensing and recovery via
deep convolutional neural networks. arXiv preprint
arXiv:1707.03386.
Peng, P., Jalali, S., and Yuan, X. (2020). Solving inverse
problems via auto-encoders. IEEE Journal on Se-
lected Areas in Information Theory, 1(1):312–323.
Peyre, G. (2010). Best basis compressed sensing. IEEE
Transactions on Signal Processing, 58(5):2613–2622.
Raj, A., Li, Y., and Bresler, Y. (2019). Gan-based projec-
tor for faster recovery with convergence guarantees in
linear inverse problems. In Proceedings of the IEEE
International Conference on Computer Vision, pages
5602–5611.
Rick Chang, J., Li, C.-L., Poczos, B., Vijaya Kumar, B.,
and Sankaranarayanan, A. C. (2017a). One network to
solve them all–solving linear inverse problems using
deep projection models. In Proceedings of the IEEE
International Conference on Computer Vision, pages
5888–5897.
Rick Chang, J. H., Li, C.-L., Poczos, B., Vijaya Kumar, B.
V. K., and Sankaranarayanan, A. C. (2017b). One net-
work to solve them all – solving linear inverse prob-
lems using deep projection models. In Proceedings of
the IEEE International Conference on Computer Vi-
sion (ICCV).
Ryu, E., Liu, J., Wang, S., Chen, X., Wang, Z., and Yin,
W. (2019). Plug-and-play methods provably con-
verge with properly trained denoisers. In International
Conference on Machine Learning, pages 5546–5557.
PMLR.
Shah, V. and Hegde, C. (2018). Solving linear inverse prob-
lems using gan priors: An algorithm with provable
guarantees. In 2018 IEEE international conference
on acoustics, speech and signal processing (ICASSP),
pages 4609–4613. IEEE.
Sønderby, C. K., Caballero, J., Theis, L., Shi, W., and
Husz
´
ar, F. (2016). Amortised map inference for image
super-resolution. arXiv preprint arXiv:1610.04490.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
104