frame 1 frame 50 frame 100 frame 148
camera 3
camera 4
Figure 13: Images taken with the variable focal length and
images taken with the focal length fixed at the reference fo-
cal length are shown for each camera. The upper row is
the images for the variable focal length, where the skele-
ton of the body is superimposed on the image as a motion
capturing result. The lower row is the images for the fixed
focal length where the fixed focus image is made from the
variable focus image. The 1st, 2nd, 3rd and 4th columns
correspond to the 1st, 50th, 100th, and 148th frames, re-
spectively.
REFERENCES
Alcantarilla, P. F., Bartoli, A., and Davison, A. J. (2012).
Kaze features. In ECCV, volume 31, pages 214–227.
Alcantarilla, P. F., Nuevo, J., and Bartoli, A. (2013). Fast
explicit diffusion for accelerated features in nonlinear
scale shapes. In British Machine Vision Conference,
pages 117–126.
Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008).
Speeded-up robust features (surf). Computer Vision
and Image Understanding, 110(3):346–359.
Cannelle, B., Paparoditis, N., and Tournaire, O. (2010).
Panorama-based camera calibration. In IAPRS, vol-
ume XXXVIII, Part 3, pages 73—78.
Joo, H., Liu, H., Tan, L., Gui, L., Nabbe, B., Matthews,
I., Kanade, T., Nobuhara, S., and Sheikh, Y. (2015).
Panoptic studio: A massively multiview system for
social motion capture. In ICCV.
Kobayashi, D., Igarashi, T., and Yamamoto, M. (2018).
Motion capture from multi-view mobile cameras. In
CVIM (Japanese Edition), volume 2018-CVIM-210,
pages 1–6.
Kobayashi, D. and Yamamoto, M. (2015). Wide-range mo-
tion capture from panning multi-view cameras. In
ACM SIGGRAPH Asia 2015 Posters, page Article 36.
Kobayashi, D. and Yamamoto, M. (2018). Capturing
floor exercise from multiple panning-zooming cam-
era. In Eurographics / ACM SIGGRAPH Symposium
on Computer Animation-Posters.
Kurihara, K., Hoshino, S., Yamane, K., and Nakamura,
Y. (2002). Optical motion capture system with pan-
tilt camera tracking and realtime data processing. In
International Conference on Robotics & Automation,
pages 1241–1248.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60:91–110.
Nageli, T., Oberholzer, S., Pl¨uss, S., Alonso-Mora, J., and
Hilliges, O. (2018). Flycon: real-time environment-
independent multi-view human pose estimation with
aerial vehicles. volume 37, page Article 182.
Rhodin, H., Richardt, C., Casas, D., Insafutdinov, E.,
Shafiei, M., Seidel, H., Schiele, B., and Theobalt, C.
(2016). Egocap: Egocentric marker-less motion cap-
ture with two fisheye cameras. ACM Trans. Graph.,
35(6):Article 162.
Saini, N., Price, E., Tallamraju, R., and Black, M. J. (2019).
Markerless outdoor human motion capture using mul-
tiple autonomous micro aerial vehicles. In ICCV.
Shum, H.-Y. and Szeliski, R. (2000). Systems and exper-
iment paper: Construction of panoramic image mo-
saics with global and local alignment. International
Journal of Computer Vision, 36(2):101–130.
Sinha, S. N. and Pollefeys, M. (2006). Pan?tilt?zoom
camera calibration and high-resolution mosaic gen-
eration. Computer Vision and Image Understanding,
103(3):170–183.
Sundaresan, A. and Chellappa, R. (2005). Markerless mo-
tion capture using multiple cameras. In Computer Vi-
sion for Interactive and Intelligent Environment.
Tsai, R. Y. (1986). An efficient and accurate camera cal-
ibration technique for 3d machine vision. In CVPR,
pages 364–374.
Ukita, N. and Matsuyama, T. (2005). Real-time cooperative
multi-target tracking by communicating active vision
agents. Computer Vision and Image Understanding,
97(2):137–179.
Wu, Z. and Radke, R. J. (2013). Keeping a pan-tilt-zoom
camera calibrated. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1994–2007.
Xu, L., Liu, Y., Cheng, W., Guo, K., Zhou, G., Dai, Q.,
and Fang, L. (2016). Flycap: Markerless motion cap-
ture using multiple autonomous flying cameras. IEEE
Transactions on Visualization and Computer Graph-
ics, 24(8):2284–2297.
Yamamoto, M. (2005). A simple and robust approach to
drift reduction in motion estimation of human body.
The IEICE Transactions on Information and Sys-
tems(Japanese Edition)D-II, J88-D-II(7):1153–1165.
Yamamoto, M., Isono, S., , and Wada, Y. (2014). Determin-
ing pose of intertwisting human bodies from multiple
camera views. The journal of the Institute of Image
Information and Television Engineers(Japanese Edi-
tion), 68(8):J358–J370.