Gallart,  X.,  Riba,  J.,  Bori,  G.,  Mu,  E.,  &  Combalia,  A. 
(2018).  Hip  prostheses  in  young  adults  .  Surface 
prostheses and short-stem prostheses. Revista Española 
de Cirugía Ortopédica y Traumatología, 62(2), 142–
152. 
Gombár, C., Janositz, G., Friebert, G., & Sisák, K. (2019). 
The  DePuy  Proxima
TM
 short stem for total hip 
arthroplasty  –  Excellent  outcome  at  a  minimum of  7 
years.  Journal of Orthopaedic Surgery,  27(2),  1–6. 
https://doi.org/10.1177/2309499019838668 
Gómez-García,  F.,  Fernández-Fairen,  M.,  &  Espinosa-
mendoza,  R.  (2016).  A  proposal  for  the  study  of 
cementless short-stem hip prostheses. Acta Ortopédica 
Mexicana, 30(4), 204–215. 
Hanada, S., Masahashi, N., Jung, T., & Yamada, N. (2014). 
Fabrication of a high-performance hip prosthetic stem 
using β Ti–33 . 6Nb–4Sn. Journal of the Mechanical 
Behavior of Biomedical Materials,  30,  140–149. 
https://doi.org/10.1016/j.jmbbm.2013.11.002 
Hu,  C.  Y.,  &  Yoon,  T.  R.  (2018).  Recent  updates  for 
biomaterials used in total hip arthroplasty. Biomaterials 
Research, 22(1), 1–12. https://doi.org/10.1186/s40824-
018-0144-8 
Jasty,  M.,  Krushell,  R.,  Zalenski,  E.,  Connor,  D.  O., 
Sedlacek, R., & Harris, W. (1993). The contribution of 
the nonporous distal stem to the stability of proximally 
porous-coated canine femoral components.  8(1),  33–
41. 
Javed, F., Ahmed, H., Crespi, R., & Romanos, G. (2013). 
Role  of  primary  stability  for  successful 
osseointegration  of  dental  implants:  Factors  of 
influence and evaluation. Interventional Medicine and 
Applied Science,  5(4),  162–167.  https://doi.org/ 
10.1556/IMAS.5.2013.4.3 
Jung,  J.  M.,  &  Kim,  C.  S.  (2014).  Analysis  of  stress 
distribution around total hip stems custom-designed for 
the  standardized  Asian  femur  configuration. 
Biotechnology and Biotechnological Equipment, 28(3), 
525–532. 
https://doi.org/10.1080/13102818.2014.928450 
Kang, Y. J., Yoo, J. Il, Cha, Y. H., Park, C. H., & Kim, J. 
T. (2020). Machine learning–based identification of hip 
arthroplasty  designs.  Journal of Orthopaedic 
Translation,  21,  13–17.  https://doi.org/10.1016/ 
j.jot.2019.11.004 
Katoozian, H., Devy, D. T., Arshi, A., & Saadati, U. (2001). 
Material optimization of femoral component of total hip 
prosthesis using fiber reinforced polymeric composites. 
Medical Engineering & Physics, 4533(October),  0–9. 
https://doi.org/10.1016/S1350-4533(01)00079-0 
Khanuja, H. S., Banerjee, S., Orth, M. S., Glasg, M., Jain, 
D.,  &  Orth,  M.  S.  (2014).  Short  Bone-Conserving 
Stems in Cementless Hip Arthroplasty.  Bone & Joint 
Surgery, 96-A, 1742–1752. 
Kheir,  M.  M.,  Drayer,  N.  J.,  &  Chen,  A.  F.  (2020).  An 
Update on Cementless Femoral Fixation in Total Hip 
Arthroplasty. Journal of Bone and Joint Surgery
, 1646–
1661. 
Kim, Y., Park,  J.,  & Kim, J. (2013).  Is  Diaphyseal Stem 
Fixation Necessary for Primary Total Hip Arthroplasty 
in  Patients  with  Osteoporotic  Bone  (Class  C  Bone)? 
Journal of Arthroplasty,  28(1),  139-146.e1. 
https://doi.org/10.1016/j.arth.2012.04.002 
Kuiper,  J.  H.,  &  Huiskes,  R.  (1996).  Friction  and  stem 
stiffness affect dynamic interface motion in Total Hip 
Replacement.  Journal of Orthopaedic Research,  14, 
36–43. 
Kunii, T., Mori, Y., Tanaka, H., Kogure, A., Kamimura, M., 
Mori, N., Hanada, S., Masahashi, N., & Itoi, E. (2019). 
Improved Osseointegration of a TiNbSn Alloy with a 
Low Young’s Modulus Treated with Anodic Oxidation. 
Scientific Reports,  9(1),  1–10.  https://doi.org/ 
10.1038/s41598-019-50581-7 
Kurtz, S. M., Ms, E. L., Ong, K., Ma, K. Z., Kelly, M., & 
Bozic, K. J. (2010). Future young patient demand for 
primary  and  revision  joint  replacement:  National 
projections from 2010 to 2030. Clinical Orthopaedics 
and Related Research,  2009,  2606–2612. 
https://doi.org/10.1007/s11999-009-0834-6 
Learmonth, I. D., Young, C., & Rorabeck, C. (2007). The 
operation of the century: total hip replacement. Lancet, 
370(9597), 1508–1519. https://doi.org/10.1016/S0140-
6736(07)60457-7 
Nazari-farsani,  S.  (2015).  Precision and Accuracy of 
Marker-Based and Model-Based Radiostereometric 
Analyses in Determination of Three-Dimensional 
Micromotion of a Novel Hip Stem (Issue December). 
Åbo Akademi University. 
Ojeda,  C.  (2009).  Estudio  de  la  influencia  de  estabilidad 
primaria en el diseño de vástagos de prótesis femorales 
personalizadas:  aplicación  aplicación  a  paciente 
específico. In Tesis doctoral, Universidad Politécnica 
de Madrid. 
Otomaru, I., Nakamoto, M., Kagiyama, Y., Takao, M., 
Sugano,  N.,  Tomiyama,  N.,  Tada,  Y.,  &  Sato,  Y. 
(2012).  Automated  preoperative  planning  of  femoral 
stem in total hip arthroplasty from 3D CT data: Atlas-
based approach and comparative study. Medical Image 
Analysis,  16(2),  415–426.  https://doi.org/10.1016/ 
j.media.2011.10.005 
Pellizzari, M., Jam, A., Tschon, M., Fini, M., Lora, C., & 
Benedetti,  M.  (2020).  A  3D-Printed  Ultra-Low 
Young’s  Modulus  β  -Ti  Alloy  for  Biomedical 
Applications. Materials, 1–16. 
Portal-Núñez, S., Lozano, D., De la Fuente, M., & Esbrit, 
P.  (2012).  Fisiopatología  del  envejecimiento  óseo. 
Revista Española de Geriatría y Gerontología, 47(3), 
125–131. https://doi.org/10.1016/j.regg.2011.09.003 
Rawal, B. R., Ribeiro, R., Malhotra, R., & Bhatnagar, N. 
(2011).  Design  and  manufacture  of  short  stemless 
femoral  hip  implant based on CT images. Journal of 
Medicine on Science, 11(8), 296–301. 
Raymond,  D.  (2019,  June  28). 
FemurFracture - Lower 
Extremity CTs.  Embodi3D.Com.  https://www.embodi 
3d.com/files/file/25956-femurfracture/ 
Rieker,  C.  B.  (2016).  Tribology  of  total  hip  arthroplasty 
prostheses.  EFORT Open Reviews,  1(2),  52–57. 
https://doi.org/10.1302/2058-5241.1.000004 
Rivera, A. F., Castro, F. De, Moreno, A., & Rubio, J. C. 
(2020). Assessment of the Highest Stress Concentration