Generally, the achievements in this paper can be
summarized as follows:
• We reproduced results obtained in literature by the
simple architecture U-Net and propose a modified
model.
• The proposed network has significantly fewer pa-
rameters (approximately 6x less).
• The proposed model yields better performance re-
sults compared to other related works.
• We reach and outperform the state of the art.
REFERENCES
(2004). CASIA-IrisV3. http://www.cbsr.ia.ac.cn/english/
IrisDatabase.asp. Accessed: 2021-05-13.
(2018). Understanding RMSprop — faster neural net-
work learning. https://towardsdatascience.com/
understanding-rmsprop-faster-neural-network-
learning-62e116fcf29a. Accessed: 2021-05-3.
Bazrafkan, S., Thavalengal, S., and Corcoran, P. (2018). An
end to end deep neural network for iris segmentation
in unconstrained scenarios. Neural Networks, 106:79–
95.
Brachmann, A. and Redies, C. (2016). Using convolu-
tional neural network filters to measure left-right mir-
ror symmetry in images. Symmetry, 8(12).
Daugman, J. (2009). How iris recognition works. In The
essential guide to image processing, pages 715–739.
Elsevier.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. Adaptive computation and machine learn-
ing. MIT Press.
Heikkila, M. and Pietikainen, M. (2006). A texture-based
method for modeling the background and detecting
moving objects. IEEE transactions on pattern anal-
ysis and machine intelligence, 28(4):657–662.
Hofbauer, H., Alonso-Fernandez, F., Wild, P., Bigun, J., and
Uhl, A. (2014a). A ground truth for iris segmenta-
tion. In 2014 22nd international conference on pat-
tern recognition, pages 527–532. IEEE.
Hofbauer, H., Alonso-Fernandez, F., Wild, P., Bigun, J., and
Uhl, A. (2014b). A ground truth for iris segmenta-
tion. In 2014 22nd International Conference on Pat-
tern Recognition, pages 527–532.
Jalilian, E. and Uhl, A. (2017). Iris segmentation using fully
convolutional encoder–decoder networks. In Deep
Learning for Biometrics, pages 133–155. Springer.
Le, M. and Kayal, S. (2020). Revisiting edge detection in
convolutional neural networks.
Lian, S., Luo, Z., Zhong, Z., Lin, X., Su, S., and Li, S.
(2018). Attention guided u-net for accurate iris seg-
mentation. Journal of Visual Communication and Im-
age Representation, 56:296–304.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 3431–3440.
Lozej, J., Meden, B., Struc, V., and Peer, P. (2018). End-
to-end iris segmentation using u-net. In 2018 IEEE
International Work Conference on Bioinspired Intelli-
gence (IWOBI), pages 1–6. IEEE.
Proença, H. and Alexandre, L. A. (2007). The nice. i: noisy
iris challenge evaluation-part i. In 2007 First IEEE
International Conference on Biometrics: Theory, Ap-
plications, and Systems, pages 1–4. IEEE.
Proenca, H., Filipe, S., Santos, R., Oliveira, J., and Alexan-
dre, L. (2010). The UBIRIS.v2: A database of visi-
ble wavelength images captured on-the-move and at-
a-distance. IEEE Trans. PAMI, 32(8):1529–1535.
Santos, G., Grancho, E., Bernardo, M. V., and Fiadeiro,
P. T. (2015). Fusing iris and periocular information
for cross-sensor recognition. Pattern Recognition Let-
ters, 57:52–59. Mobile Iris CHallenge Evaluation part
I (MICHE I).
Shah, S. and Ross, A. (2009). Iris segmentation using
geodesic active contours. IEEE Transactions on In-
formation Forensics and Security, 4(4):824–836.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Tian, Q.-C., Pan, Q., Cheng, Y.-M., and Gao, Q.-X. (2004).
Fast algorithm and application of hough transform in
iris segmentation. In Proceedings of 2004 interna-
tional conference on machine learning and cybernet-
ics (IEEE Cat. No. 04EX826), volume 7, pages 3977–
3980. IEEE.
Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for ma-
chine learning, 4(2):26–31.
Vitek, M., Das, A., Pourcenoux, Y., Missler, A., Paumier,
C., Das, S., Ghosh, I., Lucio, D. R., Zanlorensi, L.,
Menotti, D., Boutros, F., Damer, N., Grebe, J., Kui-
jper, A., Hu, J., He, Y., Wang, C., Liu, H., Wang, Y.,
and Vyas, R. (2020). Ssbc 2020: Sclera segmenta-
tion benchmarking competition in the mobile environ-
ment.
Iris Segmentation based on an Optimized U-Net
183