REFERENCES
Chang, A. X., Funkhouser, T. A., Guibas, L. J., Hanra-
han, P., Huang, Q., Li, Z., Savarese, S., Savva, M.,
Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. (2015).
ShapeNet: An Information-Rich 3D Model Reposi-
tory. CoRR, arXiv:1512.03012.
Chibane, J., Alldieck, T., and Pons-Moll, G. (2020). Im-
plicit Functions in Feature Space for 3D Shape Recon-
struction and Completion. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 6968–6979.
Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S.
(2016). 3D-R2N2: A Unified Approach for Single and
Multi-view 3D Object Reconstruction. In European
Conference on Computer Vision (ECCV), pages 628–
644.
Fan, H., Su, H., and Guibas, L. J. (2017). A Point Set Gen-
eration Network for 3D Object Reconstruction from
a Single Image. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2463–
2471.
Girdhar, R., Fouhey, D. F., Rodriguez, M., and Gupta, A.
(2016). Learning a Predictable and Generative Vector
Representation for Objects. In European Conference
on Computer Vision (ECCV), pages 484–499.
Hane, C., Tulsiani, S., and Malik, J. (2017). Hierarchical
Surface Prediction for 3D Object Reconstruction. In
International Conference on 3D Vision (3DV), pages
412–420.
Hester, T., Vecer
´
ık, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Horgan, D., Quan, J., Sendonaris, A.,
Osband, I., Dulac-Arnold, G., Agapiou, J. P., Leibo,
J. Z., and Gruslys, A. (2018). Deep Q-learning From
Demonstrations. In Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI), pages 3223–3230.
Ibing, M., Lim, I., and Kobbelt, L. (2021). 3D Shape Gen-
eration With Grid-Based Implicit Functions. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 13559–13568.
Jiang, C. M., Sud, A., Makadia, A., Huang, J., Nießner, M.,
and Funkhouser, T. A. (2020). Local Implicit Grid
Representations for 3D Scenes. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 6000–6009.
Kato, H., Ushiku, Y., and Harada, T. (2018). Neural 3D
Mesh Renderer. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3907–
3916.
Kingma, D. P. and Ba, J. (2015). Adam: A Method for
Stochastic Optimization. In 3rd International Confer-
ence on Learning Representations (ICLR).
Lin, C., Fan, T., Wang, W., and Nießner, M. (2020). Model-
ing 3D Shapes by Reinforcement Learning. In Euro-
pean Conference on Computer Vision (ECCV), pages
545–561.
Liu, S., Chen, W., Li, T., and Li, H. (2019). Soft Raster-
izer: A Differentiable Renderer for Image-Based 3D
Reasoning. In IEEE/CVF International Conference
on Computer Vision (ICCV), pages 7707–7716.
Mescheder, L. M., Oechsle, M., Niemeyer, M., Nowozin,
S., and Geiger, A. (2019). Occupancy Networks:
Learning 3D Reconstruction in Function Space. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4460–4470.
Park, J. J., Florence, P., Straub, J., Newcombe, R. A., and
Lovegrove, S. (2019). DeepSDF: Learning Continu-
ous Signed Distance Functions for Shape Represen-
tation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 165–174.
Riegler, G., Ulusoy, A. O., and Geiger, A. (2017). OctNet:
Learning Deep 3D Representations at High Resolu-
tions. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6620–6629.
Ross, S., Gordon, G. J., and Bagnell, D. (2011). A Reduc-
tion of Imitation Learning and Structured Prediction
to No-Regret Online Learning. In Fourteenth Interna-
tional Conference on Artificial Intelligence and Statis-
tics (AISTATS), volume 15, pages 627–635.
van Hasselt, H., Guez, A., and Silver, D. (2016). Deep
Reinforcement Learning with Double Q-Learning. In
Thirtieth AAAI Conference on Artificial Intelligence
(AAAI), pages 2094–2100.
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang,
Y. (2018). Pixel2Mesh: Generating 3D Mesh Models
from Single RGB Images. In European Conference
on Computer Vision (ECCV), pages 55–71.
Wen, C., Zhang, Y., Li, Z., and Fu, Y. (2019).
Pixel2Mesh++: Multi-View 3D Mesh Generation via
Deformation. In IEEE/CVF International Conference
on Computer Vision (ICCV), pages 1042–1051.
Viewpoint-independent Single-view 3D Object Reconstruction using Reinforcement Learning
819