factor N increase significantly increases the memory
overhead of our operation beyond the memory sav-
ings achieved through a reduced image size through
foveated sensing. In future work, we would like to
address this limitation through factorization methods
to achieve memory savings that make operating on
foveated images in cartesian space viable from a com-
putational overhead point of view.
REFERENCES
Amorim, M., Bortoloti, F., Ciarelli, P. M., de Oliveira,
E., and de Souza, A. F. (2018). Analysing rotation-
invariance of a log-polar transformation in convolu-
tional neural networks. In 2018 International Joint
Conference on Neural Networks (IJCNN), pages 1–6.
IEEE.
Balasuriya, L. and Siebert, J. (2003). A low level vision hi-
erarchy based on an irregularly sampled retina. In Pro-
ceedings of the International Conference on Compu-
tational Intelligence, Robotics and Autonomous Sys-
tems, Singapore.
Balasuriya, S. (2006). A computational model of space-
variant vision based on a self-organised artificial
retina tessellation. PhD thesis, University of Glasgow.
Clippingdale, S. and Wilson, R. (1996). Self-similar neural
networks based on a kohonen learning rule. Neural
Networks, 9(5):747–763.
Esteves, C., Allen-Blanchette, C., Zhou, X., and Daniilidis,
K. (2017). Polar transformer networks. arXiv preprint
arXiv:1709.01889.
Hermosilla, P., Ritschel, T., V
´
azquez, P.-P., Vinacua,
`
A.,
and Ropinski, T. (2018). Monte carlo convolution
for learning on non-uniformly sampled point clouds.
ACM Transactions on Graphics (TOG), 37(6):1–12.
Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015).
Spatial transformer networks. Advances in neural in-
formation processing systems, 28:2017–2025.
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Suk-
thankar, R., and Fei-Fei, L. (2014). Large-scale video
classification with convolutional neural networks. In
Proceedings of the IEEE conference on Computer Vi-
sion and Pattern Recognition, pages 1725–1732.
Kim, J., Jung, W., Kim, H., and Lee, J. (2020). Cy-
cnn: a rotation invariant cnn using polar mapping
and cylindrical convolution layers. arXiv preprint
arXiv:2007.10588.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Li, X., Jie, Z., Wang, W., Liu, C., Yang, J., Shen, X., Lin,
Z., Chen, Q., Yan, S., and Feng, J. (2017). Foveanet:
Perspective-aware urban scene parsing. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pages 784–792.
Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. (2020). Nerf: Repre-
senting scenes as neural radiance fields for view syn-
thesis. In European conference on computer vision,
pages 405–421. Springer.
Nakada, M., Chen, H., and Terzopoulos, D. (2018). Deep
learning of biomimetic visual perception for virtual
humans. In Proceedings of the 15th ACM Symposium
on Applied Perception, pages 1–8.
Ozimek, P., Hristozova, N., Balog, L., and Siebert, J. P.
(2019). A space-variant visual pathway model for data
efficient deep learning. Frontiers in cellular neuro-
science, 13:36.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 652–660.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. arXiv preprint arXiv:1706.02413.
Schwartz, E. L. (1980). Computational anatomy and func-
tional architecture of striate cortex: a spatial map-
ping approach to perceptual coding. Vision research,
20(8):645–669.
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. (2020). Implicit neural representations with
periodic activation functions. Advances in Neural In-
formation Processing Systems, 33.
Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-
Keil, S., Raghavan, N., Singhal, U., Ramamoor-
thi, R., Barron, J. T., and Ng, R. (2020). Fourier
features let networks learn high frequency func-
tions in low dimensional domains. arXiv preprint
arXiv:2006.10739.
Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B.,
Goulette, F., and Guibas, L. J. (2019). Kpconv: Flex-
ible and deformable convolution for point clouds. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 6411–6420.
Wah, C., Branson, S., Welinder, P., Perona, P., and Be-
longie, S. (2011). The caltech-ucsd birds-200-2011
dataset.
Wang, S., Suo, S., Ma, W.-C., Pokrovsky, A., and Urtasun,
R. (2018). Deep parametric continuous convolutional
neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 2589–2597.
Weiman, C. F. and Chaikin, G. (1979). Logarithmic spi-
ral grids for image processing and display. Computer
Graphics and Image Processing, 11(3):197–226.
Wu, W., Qi, Z., and Fuxin, L. (2019). Pointconv: Deep
convolutional networks on 3d point clouds. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9621–9630.
Xu, M., Ding, R., Zhao, H., and Qi, X. (2021). Paconv:
Position adaptive convolution with dynamic kernel
assembling on point clouds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 3173–3182.
Monte-Carlo Convolutions on Foveated Images
451