REFERENCES
Arar, M., Ginger, Y., Danon, D., Bermano, A. H., and
Cohen-Or, D. (2020). Unsupervised multi-modal im-
age registration via geometry preserving image-to-
image translation. In CVPR.
Baek et al., K. (2020). Rethinking the truly unsupervised
image-to-image translation. arXiv.
Bhattacharjee, D., Kim, S., Vizier, G., and Salzmann, M.
(2020). Dunit: Detection-based unsupervised image-
to-image translation. In CVPR.
Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017).
Variational inference: A review for statisticians. Jour-
nal of the American statistical Association.
Bruls, T., Porav, H., Kunze, L., and Newman, P. (2019).
Generating all the roads to rome: Road layout ran-
domization for improved road marking segmentation.
In ITSC.
Cao, J., Hou, L., Yang, M.-H., He, R., and Sun, Z. (2021).
Remix: Towards image-to-image translation with lim-
ited data. In CVPR.
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous sep-
arable convolution for semantic image segmentation.
In ECCV.
Cherian, A. and Sullivan, A. (2019). Sem-gan:
Semantically-consistent image-to-image translation.
In WACV.
Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., and Choo,
J. (2018). Stargan: Unified generative adversarial net-
works for multi-domain image-to-image translation.
In CVPR.
Choi, Y., Uh, Y., Yoo, J., and Ha, J.-W. (2020). Stargan
v2: Diverse image synthesis for multiple domains. In
CVPR.
Cord, A. and Aubert, D. (2011). Towards rain detection
through use of in-vehicle multipurpose cameras. In
IV.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. In CVPR.
Golestaneh, S. A. and Karam, L. J. (2017). Spatially-
varying blur detection based on multiscale fused and
sorted transform coefficients of gradient magnitudes.
In CVPR.
Gong, R., Li, W., Chen, Y., and Gool, L. V. (2019). Dlow:
Domain flow for adaptation and generalization. In
CVPR.
Halder, S. S., Lalonde, J.-F., and de Charette, R. (2019).
Physics-based rendering for improving robustness to
rain. In ICCV.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). Gans trained by a two time-
scale update rule converge to a local nash equilibrium.
In NeurIPS.
Huang, H., Li, Z., He, R., Sun, Z., and Tan, T. (2018a). In-
trovae: Introspective variational autoencoders for pho-
tographic image synthesis. In NeurIPS.
Huang, X., Liu, M.-Y., Belongie, S., and Kautz, J. (2018b).
Multimodal unsupervised image-to-image translation.
In ECCV.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversar-
ial networks. In CVPR.
Jeong, S., Kim, Y., Lee, E., and Sohn, K. (2021). Memory-
guided unsupervised image-to-image translation. In
CVPR.
Kim, J., Kim, M., Kang, H., and Lee, K. (2020). U-
gat-it: unsupervised generative attentional networks
with adaptive layer-instance normalization for image-
to-image translation. In ICLR.
Lample, G., Zeghidour, N., Usunier, N., Bordes, A., De-
noyer, L., and Ranzato, M. (2017). Fader net-
works: Manipulating images by sliding attributes. In
NeurIPS.
Lee, H., Seol, J., and Lee, S.-g. (2021). Contrastive learning
for unsupervised image-to-image translation. arXiv.
Lee, H.-Y., Tseng, H.-Y., Mao, Q., Huang, J.-B., Lu, Y.-D.,
Singh, M., and Yang, M.-H. (2020). Drit++: Diverse
image-to-image translation via disentangled represen-
tations. IJCV.
Li, P., Liang, X., Jia, D., and Xing, E. P. (2018). Semantic-
aware grad-gan for virtual-to-real urban scene adap-
tion. BMVC.
Lin, C.-T., Wu, Y.-Y., Hsu, P.-H., and Lai, S.-H.
(2020). Multimodal structure-consistent image-to-
image translation. In AAAI.
Lin, J., Xia, Y., Liu, S., Zhao, S., and Chen, Z. (2021a). Zst-
gan: An adversarial approach for unsupervised zero-
shot image-to-image translation. Neurocomputing.
Lin, Y., Wang, Y., Li, Y., Gao, Y., Wang, Z., and Khan, L.
(2021b). Attention-based spatial guidance for image-
to-image translation. In WACV.
Liu, M.-Y., Breuel, T., and Kautz, J. (2017). Unsupervised
image-to-image translation networks. In NeurIPS.
Liu, M.-Y., Huang, X., Mallya, A., Karras, T., Aila, T.,
Lehtinen, J., and Kautz, J. (2019). Few-shot unsu-
pervised image-to-image translation. In ICCV.
Liu, Y., De Nadai, M., Cai, D., Li, H., Alameda-Pineda,
X., Sebe, N., and Lepri, B. (2020). Describe what to
change: A text-guided unsupervised image-to-image
translation approach. In ACM MM.
Ma, L., Jia, X., Georgoulis, S., Tuytelaars, T., and
Van Gool, L. (2019). Exemplar guided unsupervised
image-to-image translation with semantic consistency.
In ICLR.
Ma, S., Fu, J., Wen Chen, C., and Mei, T. (2018). Da-
gan: Instance-level image translation by deep atten-
tion generative adversarial networks. In CVPR.
Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., and Smol-
ley, S. P. (2017). Least squares generative adversarial
networks. In ICCV.
Mejjati, Y. A., Richardt, C., Tompkin, J., Cosker, D., and
Kim, K. I. (2018). Unsupervised attention-guided
image-to-image translation. In NeurIPS.
Mo, S., Cho, M., and Shin, J. (2019). Instagan: Instance-
aware image-to-image translation. ICLR.
Leveraging Local Domains for Image-to-Image Translation
187