and ramp functions, where the non-linearity of a func-
tion does not affect to derive a linear program for
ALR. The proposed method/system is available at
GitHub https://github.com/ku-dml/mol-infer.
REFERENCES
De Cao, N. and Kipf, T. (2018). Molgan: An im-
plicit generative model for small molecular graphs.
arXiv:1805.11973.
Ghasemi, F., Mehridehnavi, A., P
´
erez-Garrido, A., and
P
´
erez-S
´
anchez, H. (2018). Neural network and deep-
learning algorithms used in qsar studies: merits and
drawbacks. Drug Discovery Today, 23:1784–1790.
G
´
omez-Bombarelli, R., Wei, J., Duvenaud, D., Hern
´
andez-
Lobato, J., S
´
anchez-Lengeling, B., Sheberla, D.,
Aguilera-Iparraguirre, J., Hirzel, T., Adams, R., and
Aspuru-Guzik, A. (2018). Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS Cent. Sci., 4:268–276.
Hoerl, A. and Kennard, R. (1970a). Ridge regression: Ap-
plications to nonorthogonal problems. Technometrics,
12(1):69–82.
Hoerl, A. and Kennard, R. (1970b). Ridge regression: Bi-
ased estimation for nonorthogonal problems. Techno-
metrics, 12(1):55–67.
Ikebata, H., Hongo, K., Isomura, T., Maezono, R., and
Yoshida, R. (2017). Bayesian molecular design with
a chemical language model. J. Comput. Aided Mol.
Des., 31:379–391.
Kipf, T. N. and Welling, M. (2016). Semi-supervised
classification with graph convolutional networks.
arXiv:1609.02907.
Kusner, M., Paige, B., and Hern
´
andez-Lobato, J. (2017).
Grammar variational autoencoder. In Proceedings of
the 34th International Conference on Machine Learn-
ing (ICML’17), volume 70, pages 1945–1954, Sydney,
NSW, Australia. JMLR.org.
Lo, Y.-C., Rensi, S., Torng, W., and Altman, R. (2018). Ma-
chine learning in chemoinformatics and drug discov-
ery. Drug Discovery Today, 23:1538–1546.
Madhawa, K., Ishiguro, K., Nakago, K., and Abe, M.
(2019). Graphnvp: an invertible flow model for gen-
erating molecular graphs. arXiv:1905.11600.
Miyao, T., Kaneko, H., and Funatsu, K. (2016). Inverse
QSPR/QSAR analysis for chemical structure genera-
tion (from y to x). J. Chem. Inf. Model., 56:286–299.
Muratov, E. N., Bajorath, J., Sheridan, R., Tetko, I., Fil-
imonov, D., Poroikov, V., Oprea, T., Baskin, I.,
Varnek, A., Roitberg, A., Isayev, O., Curtarolo, S.,
Fourches, D., Cohen, Y., Aspuru-Guzik, A., Winkler,
D., Agrafiotis, D., Cherkasov, A., and Tropsha, A.
(2020). QSAR without borders. Chemical Society Re-
views, 49(11):3525–3564.
Rupakheti, C., Virshup, A., Yang, W., and Beratan,
D. (2015). Strategy to discover diverse optimal
molecules in the small molecule universe. J. Chem.
Inf. Model., 55:529–537.
Segler, M., Kogej, T., Tyrchan, C., and Waller, M. (2017).
Generating focused molecule libraries for drug dis-
covery with recurrent neural networks. ACS Cent. Sci.,
4:120–131.
Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang, J.
(2020). GraphAF: a flow-based autoregressive model
for molecular graph generation. arXiv:2001.09382.
Shi, Y., Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L.,
Nagamochi, H., and Akutsu, T. (2021). An inverse
qsar method based on a two-layered model and inte-
ger programming. International Journal of Molecular
Sciences, 22:2847.
Tetko, I. and Engkvist, O. (2020). From big data to artificial
intelligence: chemoinformatics meets new challenges.
J. Cheminformatics, 12:74.
Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. J. R. Statist. Soc. B, 58:267–288.
Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., and
Tsuda, K. (2017). ChemTS: an efficient python library
for de novo molecular generation. STAM, 18:972–976.
Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L., Nag-
amochi, H., and Akutsu, T. (2021a). An improved
integer programming formulation for inferring chemi-
cal compounds with prescribed topological structures.
In The 34th International Conference on Industrial,
Engineering and Other Applications of Applied Intel-
ligent Systems (IEA/AIE 2021), pages 197–209, Kuala
Lumpur, Malaysia. Springer.
Zhu, J., Haraguchi, K., Nagamochi, H., and Akutsu, T.
(2021b). Adjustive linear regression and its appli-
cation to the inverse qsar. Department of Applied
Mathematics and Physics, Kyoto University, Tech-
nical Report, TR:2021-002 http://www.amp.i.kyoto-
u.ac.jp/tecrep.
Zou, H. and Hastie, T. (2005). Regularization and vari-
able selection via the elastic net. J. R. Statist. Soc.
B, 67(2):301–320.
Adjustive Linear Regression and Its Application to the Inverse QSAR
151