better  classification  performance  for  cognitive 
outcome,  76.25±10.9.  In  the  future,  we  plan  to 
explore the relationship between other regions of the 
brain  and  assessment  outcome  at  two  years  of  age. 
One  interesting  future  work  is  to  combine  our 
previous method (Tang et al., 2020) with the method 
presented in this paper to improve the performance of 
our system. 
REFERENCES 
Nadeem, M., Murray, D. M., Boylan, G. B., Dempsey, E. 
M., & Ryan, C. A. (2011). Early blood glucose profile 
and  neurodevelopmental  outcome  at  two  years  in 
neonatal  hypoxic-ischaemic  encephalopathy.  BMC 
Pediatrics, 11(1), 1–6. 
Massaro, A. N., Evangelou, I., Fatemi, A., Vezina, G., 
Mccarter,  R.,  Glass,  P.,  &  Limperopoulos,  C.  (2015). 
White  matter  tract  integrity  and  developmental 
outcome  in  newborn  infants  with  hypoxic‐ischemic 
encephalopathy  treated  with  hypothermia. 
Developmental Medicine & Child Neurology,  57(5), 
441-448. 
Mittal, S., Wu, Z., Neelavalli, J., & Haacke, E. M. (2009). 
Susceptibility-weighted  imaging:  Technical  aspects 
and clinical applications,  part  2. American Journal of 
Neuroradiology, 30(2), 232–252. 
Sehgal, V.,  Delproposto, Z., Haacke, E.  M., Tong, K. A., 
Wycliffe, N., Kido, D. K., & Reichenbach, J. R. (2005). 
Clinical  applications  of  neuroimaging  with 
susceptibility‐weighted imaging. Journal of Magnetic 
Resonance Imaging: An Official Journal of the 
International Society for Magnetic Resonance in 
Medicine, 22(4), 439–450. 
Macleod,  R.,  O’Muircheartaigh,  J.,  Edwards,  A.  D., 
Carmichael,  D.,  Rutherford,  M.,  &  Counsell,  S.  J. 
(2020). Automatic Detection of Neonatal Brain Injury 
on  MRI.  In  Medical Ultrasound, and Preterm, 
Perinatal and Paediatric Image Analysis  (pp.  324–
333). Springer, Cham. 
Midiri, F., La Spina, C., Alongi, A., Vernuccio, F., Longo, 
M., Argo, A., & Midiri, M. (2021). Ischemic hypoxic 
encephalopathy: The role of MRI of neonatal injury and 
medico-legal  implication.  Forensic Science 
International, 110968. 
Zhang,  X.,  Zhang,  Y.,  &  Hu,  Q.  (2019).  Deep  learning 
based  vein segmentation from  susceptibility-weighted 
images. Computing, 101(6), 637–652. 
Kim, H. G., Choi, J. W., Han, M., Lee, J. H., & Lee, H. S. 
(2020).  Texture  analysis  of  deep  medullary  veins  on 
susceptibility-weighted imaging in infants: Evaluating 
developmental  and  ischemic  changes.  European 
Radiology, 30(5), 2594–2603. 
Li, X., Zhang, W., Liu, D., & Zeng, Y. W. (2019). Effect of 
3.0  T  magnetic  resonance  SWI  and  MRS  on  early 
diagnosis  of  neonatal  HIE  and  regression  analysis  of 
related predictive factors. Journal of Hainan Medical 
University, 25(1), 75–78. 
Wu, S., Mahmoodi, S., Darekar, A., Vollmer, B., Lewis, E., 
&  Liljeroth,  M.  (2017,  July).  Feature  extraction  and 
classification  to  diagnose  hypoxic-ischemic 
encephalopathy  patients  by  using  susceptibility-
weighted MRI images. In Annual Conference on 
Medical Image Understanding and Analysis (pp. 527–
536). Springer, Cham. 
Kitamura,  G.,  Kido,  D.,  Wycliffe,  N.,  Jacobson,  J.  P., 
Oyoyo,  U.,  &  Ashwal,  S.  (2011).  Hypoxic-ischemic 
injury:  Utility  of  susceptibility-weighted  imaging. 
Pediatric Neurology, 45(4), 220–224. 
Citraro,  L.,  Mahmoodi,  S.,  Darekar,  A.,  &  Vollmer,  B. 
(2017).  Extended  three-dimensional  rotation  invariant 
local binary patterns. Image and Vision Computing, 62, 
8–18. 
Tang, Z., Mahmoodi, S., Dasmahapatra, S., Darekar, A., & 
Vollmer, B. (2020, July). Ridge detection and analysis 
of susceptibility-weighted magnetic resonance imaging 
in  neonatal  hypoxic-ischaemic  encephalopathy.  In 
Annual Conference on Medical Image Understanding 
and Analysis (pp. 307–318). Springer, Cham. 
Edmonds, C. J., Helps, S. K., Hart, D., Zatorska, A., Gupta, 
N.,  Cianfaglione,  R.,  &  Vollmer,  B.  (2020).  Minor 
neurological  signs  and  behavioural  function  at  age  2 
years  in  neonatal  hypoxic  ischaemic  encephalopathy 
(HIE). European Journal of Paediatric Neurology, 27, 
78–85. 
Kass, M., Witkin, A.,  & Terzopoulos, D. (1988). Snakes: 
Active  contour  models.  International  Journal  of 
Computer Vision, 1(4), 321–331. 
Reichenbach,  J.  R.  (2020).  Susceptibility  weighted 
imaging.  In  Neuroimaging Techniques in Clinical 
Practice (pp. 165–187). Springer, Cham. 
Dalal, N., & Triggs, B. (2005, June). Histograms of oriented 
gradients for human detection. In 2005 IEEE Computer 
Society Conference on Computer Vision and Pattern 
Recognition (CVPR'05) (Vol. 1, pp. 886–893). IEEE. 
Avants, B. B., Tustison, N., & Song, G. (2009). Advanced 
normalization tools (ANTS). Insight j, 2(365), 1-35. 
Shattuck, D. W.,  Mirza, M.,  Adisetiyo, V.,  Hojatkashani, 
C.,  Salamon,  G.,  Narr,  K.  L,  &  Toga,  A.  W.  (2008). 
Construction  of  a  3D  probabilistic  atlas  of  human 
cortical structures. Neuroimage, 39(3), 1064–1080.