In Proceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
’14, pages 3606–3613, Washington, DC, USA. IEEE
Computer Society.
Cimpoi, M., Maji, S., Kokkinos, I., and Vedaldi, A. (2016).
Deep filter banks for texture recognition, description,
and segmentation. International Journal of Computer
Vision, 118(1):65–94.
Florindo, J. B. (2020). Dstnet: Successive applications of
the discrete schroedinger transform for texture recog-
nition. Information Sciences, 507:356–364.
Fujieda, S., Takayama, K., and Hachisuka, T. (2017).
Wavelet convolutional neural networks for texture
classification.
Gonc¸alves, W. N., da Silva, N. R., da Fontoura Costa,
L., and Bruno, O. M. (2016). Texture recognition
based on diffusion in networks. Information Sciences,
364(C):51–71.
Guo, Z., Zhang, L., and Zhang, D. (2010a). A completed
modeling of local binary pattern operator for texture
classification. Trans. Img. Proc., 19(6):1657–1663.
Guo, Z., Zhang, L., and Zhang, D. (2010b). Rota-
tion invariant texture classification using lbp variance
(lbpv) with global matching. Pattern Recognition,
43(3):706–719.
Hayman, E., Caputo, B., Fritz, M., and Eklundh, J.-O.
(2004). On the significance of real-world conditions
for material classification. In Pajdla, T. and Matas, J.,
editors, Computer Vision - ECCV 2004, pages 253–
266, Berlin, Heidelberg. Springer Berlin Heidelberg.
Ji, L., Chang, M., Shen, Y., and Zhang, Q. (2020). Re-
current convolutions of binary-constraint cellular neu-
ral network for texture recognition. Neurocomputing,
387:161 – 171.
Kannala, J. and Rahtu, E. (2012). Bsif: Binarized statisti-
cal image features. In ICPR, pages 1363–1366. IEEE
Computer Society.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
ageNet Classification with Deep Convolutional Neu-
ral Networks. Communitions of the ACM, 60(6):84–
90.
Lazebnik, S., Schmid, C., and Ponce, J. (2005). A sparse
texture representation using local affine regions. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 27(8):1265–1278.
Mallat, S. (2008). A Wavelet Tour of Signal Processing,
Third Edition: The Sparse Way. Academic Press, Inc.,
USA, 3rd edition.
Ng, J. Y.-H., Hausknecht, M., Vijayanarasimhan, S.,
Vinyals, O., Monga, R., and Toderici, G. (2015). Be-
yond Short Snippets: Deep Networks for Video Clas-
sification. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 4694–4702.
Ojala, T., Pietik
¨
ainen, M., and M
¨
aenp
¨
a
¨
a, T. (2002). Mul-
tiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(7):971–987.
Pan, Z., Wu, X., and Li, Z. (2019). Central pixel selec-
tion strategy based on local gray-value distribution
by using gradient information to enhance lbp for tex-
ture classification. Expert Systems with Applications,
120:319–334.
Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F., Bengio, Y., and Courville, A. (2019).
On the spectral bias of neural networks. In Chaud-
huri, K. and Salakhutdinov, R., editors, Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 5301–5310, Long Beach, California,
USA. PMLR.
Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-
CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 39(6):1137–
1149.
Ronen, B., Jacobs, D., Kasten, Y., and Kritchman, S.
(2019). The convergence rate of neural networks for
learned functions of different frequencies. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alch
´
e-Buc, F.,
Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.
Sharan, L., Rosenholtz, R., and Adelson, E. H. (2009). Ma-
terial perceprion: What can you see in a brief glance?
Journal of Vision, 9(8):784.
Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues,
I., Yao, J., Mollura, D., and Summers, R. M. (2016).
Deep Convolutional Neural Networks for Computer-
Aided Detection: CNN Architectures, Dataset Char-
acteristics and Transfer Learning. IEEE Transactions
on Medical Imaging, 35(5, SI):1285–1298.
Simsekli, U., Sener, O., Deligiannidis, G., and Erdogdu,
M. A. (2020). Hausdorff dimension, heavy tails, and
generalization in neural networks. In Advances in
Neural Information Processing Systems.
Singh, C., Walia, E., and Kaur, K. P. (2018). Color texture
description with novel local binary patterns for effec-
tive image retrieval. Pattern Recognition, 76:50–68.
Song, T., Feng, J., Wang, S., and Xie, Y. (2020). Spa-
tially weighted order binary pattern for color tex-
ture classification. Expert Systems with Applications,
147:113167.
Song, T., Feng, J., Wang, Y., and Gao, C. (2021). Color
texture description based on holistic and hierarchi-
cal order-encoding patterns. In 2020 25th Inter-
national Conference on Pattern Recognition (ICPR),
pages 1306–1312.
Song, T., Li, H., Meng, F., Wu, Q., and Cai, J. (2018a).
Letrist: Locally encoded transform feature histogram
for rotation-invariant texture classification. IEEE
Transactions on Circuits and Systems for Video Tech-
nology, 28(7):1565–1579.
Song, T., Xin, L., Gao, C., Zhang, G., and Zhang, T.
(2018b). Grayscale-inversion and rotation invariant
texture description using sorted local gradient pattern.
IEEE Signal Processing Letters, 25(5):625–629.
Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014).
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
508