ACKNOWLEDGEMENTS
We express our gratitude to L. Rousseau, C.
Wilfinger and U.T. Sarah for their support on TiN
fabrication in ESIEE PARIS clean room and Prof. E.
Lecarpentier at intercommunal hospital center in
Créteil (CHIC) for his advice on medical application
issues.
REFERENCES
Carbonne, B., & Nguyen, A. (2008). Surveillance fœtale
par mesure du pH et des lactates au scalp au cours du
travail. Journal de Gynécologie Obstétrique et Biologie
de la Reproduction, 37(1), S65–S71.
Chung, H.-J., Sulkin, M. S., Kim, J.-S., Goudeseune, C.,
Chao, H.-Y., Song, J. W., Yang, S. Y., Hsu, Y.-Y.,
Ghaffari, R., Efimov, I. R., & Rogers, J. A. (2014).
Stretchable, Multiplexed pH Sensors With
Demonstrations on Rabbit and Human Hearts
Undergoing Ischemia. Advanced Healthcare Materials,
3(1), 59–68.
Guinovart, T., Valdés-Ramírez, G., Windmiller, J. R.,
Andrade, F. J., & Wang, J. (2014). Bandage-Based
Wearable Potentiometric Sensor for Monitoring Wound
pH. Electroanalysis, 26(6), 1345–1353.
Huang, W.-D., Cao, H., Deb, S., Chiao, M., & Chiao, J. C.
(2011). A flexible pH sensor based on the iridium oxide
sensing film. Sensors and Actuators A: Physical,
169(1), 1–11.
Korostynska, O., Arshak, K., Gill, E., & Arshak, A. (2008).
Review Paper: Materials and Techniques for In Vivo pH
Monitoring. IEEE Sensors Journal, 8(1), 20–28.
Kurzweil, P. (2009). Metal Oxides and Ion-Exchanging
Surfaces as pH Sensors in Liquids: State-of-the-Art and
Outlook. Sensors, 9(6), 4955–4985.
Liu, M., Ma, Y., Su, L., Chou, K.-C., & Hou, X. (2016). A
titanium nitride nanotube array for potentiometric
sensing of pH. The Analyst, 141(5), 1693–1699.
Malkaj, P., Dalas, E., Vitoratos, E., & Sakkopoulos, S.
(2006). PH electrodes constructed from
polyaniline/zeolite and polypyrrole/zeolite conductive
blends. Journal of Applied Polymer Science, 101(3),
1853–1856.
Manjakkal, L., Dervin, S., & Dahiya, R. (2020). Flexible
potentiometric pH sensors for wearable systems. RSC
Advances, 10(15), 8594–8617.
Park, H. J., Yoon, J. H., Lee, K. G., & Choi, B. G. (2019).
Potentiometric performance of flexible pH sensor based
on polyaniline nanofiber arrays. Nano Convergence,
6(1), 9.
Paul Shylendra, S., Lonsdale, W., Wajrak, M., Nur-E-
Alam, M., & Alameh, K. (2020). Titanium Nitride Thin
Film Based Low-Redox-Interference Potentiometric
pH Sensing Electrodes. Sensors, 21(1), 42.
Peterson, J. I., Goldstein, S. R., Fitzgerald, R. V., &
Buckhold, D. K. (1980). Fiber optic pH probe for
physiological use. Analytical Chemistry, 52(6), 864–
869.
Stamm, O., Latscha, U., Janecek, P., & Campana, A.
(1976). Development of a special electrode for
continuous subcutaneous pH measurement in the infant
scalp. American Journal of Obstetrics and Gynecology,
124(2), 193–195.
Weber, T. (1980). Continuous Fetal Scalp Tissue pH
Monitoring During Labor: An Analysis of 152
Consecutive Cases. Acta Obstetricia et Gynecologica
Scandinavica, 59(3), 217–223.