Figure 4: From the left to the right: sparse matching of features, consensus set returned by RANSAC, and dense registration.
We present 1% of the correspondences to avoid clutter.
Future work include monitoring the evolution of
wounds over time by calculating tissue area variations
from the dense registration. Also, we are working on
an attention mechanism to guide the model to classify
pixels as DFU tissue, healthy skin, or background and
then segment the five types of DFU tissues.
ACKNOWLEDGEMENTS
Y. Toledo and L. A. F. Fernandes are partially funded
by Google LARA 2020. L. A. F. Fernandes is also
funded by a FAPERJ grant (E-26/202.718/2018), and
Y. Toledo is also funded by a CAPES fellowship.
REFERENCES
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017).
SegNet: a deep convolutional encoder-decoder archi-
tecture for image segmentation. PAMI, 39(12):2481–
2495.
Bergstra, J., Yamins, D., and Cox, D. (2013). Making a
science of model search: hyperparameter optimization
in hundreds of dimensions for vision architectures. In
Proc. ICML, pages 115–123.
Chen, L. C., Papandreou, G., Schroff, F., and Adam, H.
(2017). Rethinking atrous convolution for semantic
image segmentation. arXiv:1706.05587.
Dara, S. and Tumma, P. (2018). Feature extraction by using
deep learning: a survey. In Proc. ICECA, pages 1795–
1801.
Goyal, M., Yap, M. H., Reeves, N. D., Rajbhandari, S., and
Spragg, J. (2017). Fully convolutional networks for
diabetic foot ulcer segmentation. In Proc. SMC, pages
618–623.
Hao, S., Zhou, Y., and Guo, Y. (2020). A brief survey on se-
mantic segmentation with deep learning. Neurocom-
puting, 406:302–321.
Hartley, R. and Zissermann, A. (2004). Multiple view geom-
etry in computer vision. Cambridge University Press,
2nd edition.
Kaswan, K. E., Jamil, N., and Roslan, R. (2020). Deep
learning on wound segmentation and classification: a
short review and evaluation of methods used. South-
east Eur. J. Soft Comput., 9(2):6–10.
Klein, S., Staring, M., Murphy, K., Viergever, M. A., and
Pluim, J. P. W. (2009). Elastix: a toolbox for intensity-
based medical image registration. Trans Med Imaging,
29(1):196–205.
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. (2017). Hyperband: a novel bandit-
based approach to hyperparameter optimization. J.
Mach. Learn. Res., 18(1):6765–6816.
Long, J. L., Zhang, N., and Darrell, T. (2014). Do convnets
learn correspondence? In Proc. NeurIPS, pages 1601–
1609.
Medetec (2021). Medetec wound database. [Online].
Available: https://medetec.co.uk/slide\%20scans/
foot-ulcers/index.html.
Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E.
(2016). ENet: a deep neural network architecture for
real-time semantic segmentation. arXiv:1606.02147.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net:
convolutional networks for biomedical image segmen-
tation. In Proc. MICCAI, volume 9351, pages 234–
241.
Sol
´
ıs-S
´
anchez, L. O., Ortiz-Rodriguez, J. M., Casta
˜
neda-
Miranda, R., Martinez-Blanco, M. R., Ornelas-
Vargas, G., Galv
´
an-Tejada, J. I., Galv
´
an-Tejada, C. E.,
Celaya-Padilla, J. M., and Casta
˜
neda-Miranda, C. L.
(2016). Identification and evaluation on diabetic foot
injury by computer vision. In Proc. ICIT, pages 758–
762.
Wagh, A., Jain, S., Mukherjee, A., Agu, E., Pedersen, P. C.,
Strong, D., Tulu, B., Lindsay, C., and Liu, Z. (2020).
Semantic segmentation of smartphone wound images:
comparative analysis of AHRF and CNN-based ap-
proaches. IEEE Access, 8:181590–181604.
Wang, C., Anisuzzaman, D. M., Williamson, V., Dhar,
M. K., Rostami, B., Niezgoda, J., Gopalakrishnan, S.,
and Yu, Z. (2020). Fully automatic wound segmenta-
tion with deep convolutional neural networks. Scien-
tific Reports, 10(1):1–9.
Wang, C., Anisuzzaman, D. M., Williamson, V., Dhar,
M. K., Rostami, B., Niezgoda, J., Gopalakrish-
nan, S., and Yu, Z. (2021). FUSeg dataset.
[Online]. Available: https://github.com/uwm-bigdata/
wound-segmentation/.
Zhang, X., Gilliam, C., and Blu, T. (2019). Parametric
registration for mobile phone images. In Proc. ICIP,
pages 1312–1316.
U-Net-based DFU Tissue Segmentation and Registration on Uncontrolled Dermoscopic Images
517