retrieval power of each method. Finally, we plan to
extend the study on the remaining model-fitting prob-
lem involved in MVS pipelines: Perspective from n
points (PnP). This problem recovers the camera pose
of a view inserted in the pipeline from 2D-3D cor-
respondences, and model quality measures should be
adapted to that specific case.
REFERENCES
Barath, D. (2019). MAGSAC implementation. https:
//github.com/danini/magsac. [Online; accessed 22-
January-2021].
Barath, D., Matas, J., and Hajder, L. (2016). Multi-H: Ef-
ficient recovery of tangent planes in stereo images. In
Richard C. Wilson, E. R. H. and Smith, W. A. P., ed-
itors, Proceedings of the British Machine Vision Con-
ference (BMVC), pages 13.1–13.13. BMVA Press.
Barath, D., Matas, J., and Noskova, J. (2019). MAGSAC:
marginalizing sample consensus. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10197–10205.
Chin, T.-J., Cai, Z., and Neumann, F. (2018). Robust fitting
in computer vision: Easy or hard? In Proceedings
of the IEEE European Conference of Computer Vision
(ECCV), pages 701–716.
Choi, J. and Medioni, G. (2009). StaRSaC: Stable ran-
dom sample consensus for parameter estimation. In
2009 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 675–682.
Choi, S., Kim, T., and Yu, W. (2009). Performance evalua-
tion of RANSAC family. In Proceedings of the British
Machine Vision Conference (BMVC).
Cohen, A. and Zach, C. (2015). The likelihood-ratio test
and efficient robust estimation. In Proceedings of the
IEEE International Conference on Computer Vision
(ICCV), pages 2282–2290.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Dehais, J., Anthimopoulos, M., Shevchik, S., and
Mougiakakou, S. (2017). Two-view 3D reconstruc-
tion for food volume estimation. IEEE Transactions
on Multimedia, 19(5):1090–1099.
Fan, L. and Pylv
¨
an
¨
ainen, T. (2008). Robust scale estimation
from ensemble inlier sets for random sample consen-
sus methods. In Proceedings of the IEEE European
Conference of Computer Vision (ECCV), pages 182–
195. Springer Berlin Heidelberg.
Fischler, M. and Bolles, R. (1981). Random sample consen-
sus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern
Recognition (CVPR).
Hartley, R. and Zisserman, A. (2004). Multiple view geom-
etry in computer vision. Cambridge University Press,
2nd edition. ISBN 978-0521540513.
Isack, H. and Boykov, Y. (2012). Energy-based geomet-
ric multi-model fitting. International Journal of Com-
puter Vision (IJCV), 97(2):123–147.
Leroy, A. M. and Rousseeuw, P. J. (1987). Robust regres-
sion and outlier detection. Wiley series in probability
and mathematical statistics.
Li, Z. and Snavely, N. (2018). MegaDepth: Learning single-
view depth prediction from internet photos. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2041–2050.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision (IJCV), 60(2):91–110.
Magri, L. and Fusiello, A. (2014). T-linkage: A continuous
relaxation of J-linkage for multi-model fitting. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3954–3961.
Magri, L. and Fusiello, A. (2015). Robust multiple model
fitting with preference analysis and low-rank approxi-
mation. In Proceedings of the British Machine Vision
Conference (BMVC), pages 20.1–20.12.
Miller, J. V. and Stewart, C. V. (1996). MUSE: Robust sur-
face fitting using unbiased scale estimates. Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 300–306.
Moisan, L., Moulon, P., and Monasse, P. (2012). Automatic
homographic registration of a pair of images, with a
contrario elimination of outliers. Image Processing
On Line (IPOL), 2:56–73.
Moisan, L., Moulon, P., and Monasse, P. (2016). Funda-
mental matrix of a stereo pair, with a contrario elimi-
nation of outliers. Image Processing On Line (IPOL),
6:89–113.
Moisan, L. and Stival, B. (2004). A probabilistic criterion
to detect rigid point matches between two images and
estimate the fundamental matrix. International Jour-
nal of Computer Vision (IJCV), 57(3):201–218.
Moulon, P. (2012). AC-RanSaC implementation. https:
//github.com/pmoulon/IPOL AC RANSAC. [Online;
accessed 22-January-2021].
Moulon, P., Monasse, P., and Marlet, R. (2012). Adaptive
structure from motion with a contrario model estima-
tion. In Proceedings ot the Asian Conference of Com-
puter Vision (ACCV), pages 257–270. Springer.
Moulon, P., Monasse, P., Perrot, R., and Marlet, R. (2016).
OpenMVG: Open multiple view geometry. In Interna-
tional Workshop on Reproducible Research in Pattern
Recognition, pages 60–74. Springer.
Nist
´
er, D. (2004). An efficient solution to the five-
point relative pose problem. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI),
26(6):756–770.
Rabin, J., Delon, J., Gousseau, Y., and Moisan, L. (2010).
MAC-RANSAC: a robust algorithm for the recogni-
tion of multiple objects. Proceedings of the Fifth In-
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
732