ACKNOWLEDGEMENTS 
This study was supported in part by the Translational 
Research  Institute  (TRI),  grant  UL1  TR003107 
received  from  the  National  Center  for  Advancing 
Translational  Sciences  of  the  National  Institutes  of 
Health (NIH) and award AWD00053499, Supporting 
High  Performance  Computing  in  Clinical 
Informatics. The content of this manuscript is solely 
the  responsibility  of  the  authors  and  does  not 
necessarily represent the official views of the NIH.  
REFERENCES 
Akbik, A., Blythe, D., & Vollgraf, R. (2018). Contextual 
String Embeddings for Sequence Labeling. 
Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jin, D., 
Naumann,  T.,  &  McDermott,  M.  (2019).  Publicly 
Available Clinical BERT Embeddings. 
Bojanowski,  P.,  Grave,  E.,  Joulin,  A.,  &  Mikolov,  T. 
(2017).  Enriching  word  vectors  with  subword 
information.  Transactions of the Association for 
Computational Linguistics, 5, 135-146.  
Burns,  G.  A.,  Li,  X.,  &  Peng,  N.  (2019).  Building  deep 
learning  models  for  evidence  classification  from  the 
open  access  biomedical  literature.  Database : the 
journal of biological databases and curation, 2019, 
baz034. doi: 10.1093/database/baz034 
Catelli, R., Casola, V., De Pietro, G., Fujita, H., & Esposito, 
M.  (2021).  Combining  contextualized  word 
representation and sub-document level analysis through 
Bi-LSTM+CRF  architecture  for  clinical  de-
identification. Knowledge-Based Systems, 213, 106649. 
doi: https://doi.org/10.1016/j.knosys.2020.106649 
Catelli, R., Gargiulo, F., Casola, V., De Pietro, G., Fujita, 
H., & Esposito, M. (2020). Crosslingual named entity 
recognition  for  clinical  de-identification  applied  to  a 
COVID-19 Italian data set. Applied soft computing, 97, 
106779-106779. doi: 10.1016/j.asoc.2020.106779 
Devlin,  J.  e.  a.  (2019).  Bert:  pre-training  of  deep 
bidirectional transformers for language understanding. 
In: Proceedings of  the 2019  Conference  of the  North 
American  Chapter  of  the  Association  for 
Computational  Linguistics:  Human  Language 
Technologies,  Volume  1  (Long  and  Short  Papers), 
Minneapolis,  MN,  USA.  pp.  4171–4186.  Association 
for  Computational  Linguistics.  https:// 
www.aclweb.org/anthology/N19-1423.  
Dietterich, T.  G.  (1998). Approximate  statistical  tests for 
comparing  supervised  classification  learning 
algorithms.  Neural Comput., 10(7),  1895–1923.  doi: 
10.1162/089976698300017197 
Habibi,  M.,  Weber,  L.,  Neves,  M.,  Wiegandt,  D.  L.,  & 
Leser, U. (2017). Deep learning with word embeddings 
improves  biomedical  named  entity  recognition. 
Bioinformatics, 33(14),  i37-i48.  doi:  10.1093/ 
bioinformatics/btx228 
Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-
CRF Models for Sequence Tagging.  
Jiang,  M.,  Sanger,  T.,  &  Liu,  X.  (2019).  Combining 
Contextualized Embeddings and Prior Knowledge for 
Clinical Named Entity Recognition: Evaluation Study. 
JMIR Med Inform, 7(4), e14850. doi: 10.2196/14850 
Khattak,  F.  K.,  Jeblee,  S.,  Pou-Prom,  C.,  Abdalla,  M., 
Meaney, C., & Rudzicz, F. (2019). A survey of word 
embeddings  for  clinical  text.  Journal of Biomedical 
Informatics: X, 4, 100057. doi: https://doi.org/10.1016/ 
j.yjbinx.2019.100057 
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, 
K., & Dyer, C. (2016). Neural Architectures for Named 
Entity Recognition. 
Li, J., Sun, A., Han, R., & Li, C. (2020). A Survey on Deep 
Learning  for  Named  Entity  Recognition.  IEEE 
Transactions on Knowledge and Data Engineering, PP, 
1-1. doi: 10.1109/TKDE.2020.2981314 
Liu, Z., Yang, M., Wang, X., Chen, Q., Tang, B., Wang, Z., 
& Xu, H. (2017). Entity recognition from clinical texts 
via recurrent neural network. BMC Med Inform Decis 
Mak, 17(Suppl  2),  67-67.  doi:  10.1186/s12911-017-
0468-7 
Luo, L., Yang, Z., Yang, P., Zhang, Y., Wang, L., Wang, J., 
&  Lin,  H.  (2018).  A  neural  network  approach  to 
chemical and gene/protein entity recognition in patents. 
Journal of Cheminformatics, 10(1), 65.  doi:  10.1186/ 
s13321-018-0318-3 
Ma, X., & Hovy, E. (2016). End-to-end Sequence Labeling 
via Bi-directional LSTM-CNNs-CRF. 
Mikolov,  T.,  Chen,  K.,  Corrado,  G.,  &  Dean,  J.  (2013). 
Efficient Estimation of Word Representations in Vector 
Space. http://arxiv.org/abs/1301.3781 
Min, X., Zeng, W., Chen, N., Chen, T., & Jiang, R. (2017). 
Chromatin  accessibility  prediction  via  convolutional 
long  short-term  memory  networks  with  k-mer 
embedding.  Bioinformatics, 33(14),  i92-i101.  doi: 
10.1093/bioinformatics/btx234 
Neamatullah,  I.,  Douglass,  M.  M.,  Lehman,  L.-w.  H., 
Reisner, A., Villarroel, M., Long, W. J., . . . Clifford, G. 
D.  (2008).  Automated  de-identification  of  free-text 
medical records. BMC Med Inform Decis Mak, 8(1), 32. 
doi: 10.1186/1472-6947-8-32 
Pennington, J., Socher, R., & Manning, C. (2014). Glove: 
Global Vectors for Word Representation (Vol. 14). 
Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, 
C.,  Lee,  K.,  &  Zettlemoyer,  L.  (2018).  Deep 
contextualized word representations.  
Stubbs, A., & Uzuner, Ö. (2015). Annotating longitudinal 
clinical  narratives  for  de-identification:  The  2014 
i2b2/UTHealth  corpus.  J Biomed Inform, 58 
Suppl(Suppl), S20-S29. doi: 10.1016/j.jbi.2015.07.020 
Syed, M., Al-Shukri, S., Syed, S., Sexton, K., Greer, M. L., 
Zozus,  M.,  Prior,  F.  (2021).  DeIDNER  Corpus: 
Annotation of Clinical Discharge Summary Notes for 
Named  Entity  Recognition  Using  BRAT  Tool.  Stud 
Health Technol Inform, 281,  432-436.  doi:  10.3233/ 
shti210195 
Syed, M., Syed, S., Sexton, K., Syeda, H. B., Garza, M., 
Zozus,  M.,  Prior,  F.  (2021).  Application  of  Machine