Dingwell, J. B., & Cusumano, J. (2000). Nonlinear time
series analysis of normal and pathological human
walking. Chaos, 10(4), 848-863.
Guyon, I., & Elisseeff, A. (2003). An introduction to
variable and feature selection. J. Mach. Learn. Res.,
3(JMLR.org), 1157-1182.
Hardstone, R., Poil, S.-S., Schiavone, G., Jansen, R.,
Nikulin, V. V., Mansvelder, H. D., & Linkenkaer-
Hansen, K. (2012). Detrended fluctuation analysis: a
scale-free view on neuronal oscillations. Frontiers in
Physiology, 3, 450.
Hoshi, R. A., Pastre, C. M., Vanderlei, L. C. M., & Godoy,
M. F. (2013). Poincaré plot indexes of heart rate
variability: relationships with other nonlinear variables.
Auton Neurosci., 177(2), 271-274.
Kay, M., Choe, E. K., Shepherd, J., & al., e. (2012).
Lullaby: a capture & access system for understanding
the sleep environment. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, Pittsburgh,
Pennsylvania.
Liang, Z. (2021). What does sleeping brain tell about stress?
A pilot fNIRS study into stress-related cortical
hemodynamic features during sleep. Frontiers in
Computer Science.
Liang, Z., & Chapa-Martell, M. A. (2018). Validity of
consumer activity wristbands and wearable EEG for
measuring overall sleep parameters and sleep structure
in free-living conditions. Journal of Healthcare
Informatics Research, 1-27.
Liang, Z., & Chapa-Martell, M. A. (2019). Accuracy of
Fitbit wristbands in measuring sleep stage transitions
and the effect of user-specific factors. JMIR Mhealth
Uhealth, 7(6), e13384.
Liang, Z., & Chapa-Martell, M. A. (2021). A Multi-level
classification approach for sleep stage prediction with
processed data derived from consumer wearable
activity trackers. Frontiers in Digital Health, 3,
665946.
Liang, Z., Chapa-Martell, M. A., & Nishimura, T. (2016).
Mining hidden correlations between sleep and lifestyle
factors from quantified-self data. In Proceedings of the
2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct,
Heidelberg, Germany.
Liang, Z., & Ploderer, B. (2016). Sleep tracking in the real
world: a qualitative study into barriers for improving
sleep. In Proceedings of the 28th Australian
Conference on Computer-Human Interaction,
Launceston, Tasmania, Australia.
Liang, Z., & Ploderer, B. (2020). “How Does Fitbit
Measure Brainwaves”: A Qualitative Study into the
Credibility of Sleep-tracking Technologies. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., 4(1),
Article 17.
Liang, Z., Ploderer, B., Liu, W., Nagata, Y., Bailey, J.,
Kulik, L., & Li, Y. (2016). SleepExplorer: a
visualization tool to make sense of correlations between
personal sleep data and contextual factors. Personal
Ubiquitous Comput., 20(6): 985-1000.
López-Ruiz , R., Mancini , H. L., & Calbet , X. (1995).
A statistical measure of complexity. Physics Letters A,
209(5-6), 321-326.
Molenaar, P. C. M. (2004). A manifesto on psychologyas
idiographic science: bringing the person back into
scientific psychology, this time forever. Measurement
Interdisciplinary Research and Perspectives, 2(4): 201-
218.
Park, S., Li, C.-T., Han, S., Hsu, C., Lee, S. W., & Cha, M.
(2019). Learning sleep quality from daily logs. In
Proceedings of the 25th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, USA.
Peach, H. D., Gaultney, J. F., & Ruggiero, A. R. (2018).
Direct and indirect associations of sleep knowledge and
attitudes with objective and subjective sleep duration
and quality via sleep hygiene. The Journal of Primary
Prevention, 39(6), 555-570.
Wang, C., Lizardo, O., & Hachen, D. S. (2021). Using Fitbit
data to examine factors that afftect daily activity levels
of college students. PLOS ONE 16(1): e0244747.
Weatherall, J., Paprocki, Y., Meyer, T. M., Kudel, I., &
Witt, E. A. (2018). Sleep tracking and exercise in
patients with type 2 diabetes mellitus (step-D): pilot
study to determine correlations between Fitbit data and
patient-reported outcomes. JMIR Mhealth Uhealth,
6(6), e131.
Wu, G.-Q., Arzeno, N. M., Shen, L.-L., Tang, D.-K.,
Zheng, D.-A., Zhao, N.-Q., Poon, C.-S. (2009). Chaotic
Signatures of Heart Rate Variability and Its Power
Spectrum in Health, Aging and Heart Failure. PLOS
ONE 4(2): e4323.
Yurkiewicz, I. R., Simon, P., Liedtke, M., Dahl, G., &
Dunn, T. (2018). Effect of Fitbit and iPad wearable
technology in health-related quality of life in adolescent
and young adult cancer patients. Journal of Adolescent
and Young Adult Oncology, 7(5), 579-583.
Şen, B., Peker, M., Çavuşoğlu, A., & Çelebi, F. V. (2014).
A Comparative Study on Classification of Sleep Stage
Based on EEG Signals Using Feature Selection and
Classification Algorithms. Journal of Medical Systems,
38(3), 18.