computation methods, including Linear and non-
Linear ML regressors. However, there is still a lack
of many important research questions, e.g., what
other feature selection approaches should be used to
select a better set of features for the outcome
prediction, how the proposed algorithm could be
enhanced to reduce the time and space complexity,
and what other available datasets should be collected
for the performance evaluations.
ACKNOWLEDGEMENTS
This research study is supported by the U.S. National
Science Foundation (ref no: 1852498) awarded to
Chun-Kit Ngan and partially supported by the Hong
Kong Research Grant Council Early Career Scheme
(ref no: 24614818) awarded to Yin-Ting Cheung. We
would also like to acknowledge Professor Chi-Kong
Li (Department of Paediatrics, Faculty of Medicine,
The Chinese University of Hong Kong) for medical
domain knowledge support and advice.
REFERENCES
Alhamzawi, R. & Ali, H.T.M. (2018). The Bayesian Elastic
Net Regression. Communications in Statistics -
Simulation and Computation, 47(4), 1168-1178. DOI:
10.1080/03610918.2017.1307399.
Alias, H., Morthy, S.K., & Zakaria, S.Z.S. et al. (2020).
Behavioral Outcome among Survivors of Childhood
Brain Tumor: A Case Control Study. BMC Pediatrics.
https://doi.org/10.1186/s12887-020-1951-3.
Brinkman, T., Zhu, L., Zeltzer, L. et al. (2013).
Longitudinal Patterns of Psychological Distress in
Adult Survivors of Childhood Cancer. British Journal
of Cancer, 109, 1373–1381. https://doi.org/10.1038/
bjc.2013.428.
Chen, C.W., Tsai, Y.H., Chang, F.R., & Lin, W.C. (2020).
Ensemble Feature Selection in Medical Datasets:
Combining Filter, Wrapper, and Embedded Feature
Selection Results. Expert Systems, 37(5).
https://doi.org/10.1111/exsy.12553.
Chen, L., Guan, Q., Chen, N., & YiHang, Z. (2021). A
StackNet Based Model for Fraud Detection. The 2021
International Conference on Education, Knowledge
and Information Management. doi: 10.1109/ICEKIM
52309.2021.00079.
Cherrington, M., Thabtah, F., Lu, J., & Xu, Q. (2019).
Feature Selection: Filter Methods Performance
Challenges. The 2019 International Conference on
Computer and Information Sciences. doi:
10.1109/ICCISci.2019.8716478.
Friend, A.J., Feltbower, R.G., Hughes, E.J., Dye, K.P.,
Glaser, A.W. (2018). Mental Health of Long-term
Survivors of Childhood and Young Adult Cancer: A
Systematic Review. International Journal of Cancer,
143(6), 1279-1286. doi: 10.1002/ijc.31337.
Hoerl, R.W. (2020) Ridge Regression: A Historical
Context. Technometrics, 62(4), 420-425. DOI:
10.1080/00401706.2020.1742207.
Joseph Manoj, R., Anto Praveena, M.D. & Vijayakumar, K.
(2019). An ACO–ANN Based Feature Selection
Algorithm for Big Data. Cluster Computing, 22, 3953–
3960. https://doi.org/10.1007/s10586-018-2550-z.
Kao, P.Y., Zhang, A., Goebel, M., Chen, J.W., &
Manjunath, B.S. (2019). Predicting Fluid Intelligence
of Children Using T1-Weighted MR Images and a
StackNet. Adolescent Brain Cognitive Development
Neurocognitive Prediction. ABCD-NP 2019. Lecture
Notes in Computer Science. https://doi.org/10.1007/
978-3-030-31901-4_2.
Kliegr, T., Bahník, Š., Fürnkranz, J. (2020). Advances in
Machine Learning for the Behavioural Sciences.
American Behavioural Scientist, 64(2), 145-175.
doi:10.1177/0002764219859639.
Patel, S. K., Lo, T. T., Dennis, J. M., Bhatia, S., & PADRES
Contra El Cáncer (2013). Neurocognitive and
behavioral outcomes in Latino childhood cancer
survivors. Pediatr Blood Cancer, 60(10), 1696–1702.
https://doi.org/10.1002/pbc.24608.
Patro, S.G., & Sahu, K.K. (2015). Normalization: A
Preprocessing Stage. ArXiv, abs/1503.06462.
Peng, L., Yang, L.S., Yam, P., Lam, C.S., Chan, A.S., Li,
C.K., & Cheung, Y.T. (2021). Neurocognitive and
Behavioral Outcomes of Chinese Survivors of
Childhood Lymphoblastic Leukemia. Frontiers in
Oncology. doi: 10.3389/fonc.2021.655669.
Ranstam, J. & Cook, J.A. (2018). LASSO Regression.
British Journal of Surgery, 105(10). https://doi.org/
10.1002/bjs.10895.
Saikia, P. & Baruah, R.D. (2019). Investigating Stacked
Ensemble Model for Oil Reservoir Characterisation.
The IEEE International Conference on Systems, Man
and Cybernetics. doi: 10.1109/SMC.2019.8914488.
Scikit-Learn. (2021). sklearn.ensemble.StackingClassifier.
https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.StackingClassifier.html.
Siegel, R.L, Miller, K.D., Fuchs, H.E., & Jemal, A. (2021).
Cancer Statistics. A Cancer Journal for Clinicians,
71(1), 7-33. https://doi.org/10.3322/caac.21654.
Turgeon, S., Lanovaz, M.J. (2020). Tutorial: Applying
Machine Learning in Behavioural Research.
Perspectives on Behaviour Science, 43, 697–723.
https://doi.org/10.1007/s40614-020-00270-y.
Usman, A.U., Hassan S. Abdulkadir, H.S., & Tukur, K.
(2015). Application of Dummy Variables in Multiple
Regression Analysis. International Journal of Recent
Scientific Research, 6(11), 7440-7442.