(2010). Visual object tracking using adaptive correla-
tion filters. In 2010 IEEE computer society conference
on computer vision and pattern recognition (CVPR),
pages 2544–2550. IEEE.
Boukerroui, D., Noble, J. A., and Brady, M. (2003). Veloc-
ity estimation in ultrasound images: A block match-
ing approach. In Biennial International Conference
on Information Processing in Medical Imaging, pages
586–598. Springer.
Bracewell, R. (1978). The Fourier Transform and its Appli-
cations. McGraw-Hill Kogakusha, Ltd., Tokyo, sec-
ond edition.
Bradski, G. (2000). The opencv library. Dr. Dobb’s Journal
of Software Tools, 25:120–125.
Horn, B. K. and Schunck, B. G. (1981). Determining op-
tical flow. In Techniques and Applications of Image
Understanding, volume 281, pages 319–331. Interna-
tional Society for Optics and Photonics.
Ishii, I., Taniguchi, T., Yamamoto, K., and Takaki, T.
(2011). High-frame-rate optical flow system. IEEE
Transactions on Circuits and Systems for Video Tech-
nology, 22(1):105–112.
Kearney, J. K., Thompson, W. B., and Boley, D. L. (1987).
Optical flow estimation: An error analysis of gradient-
based methods with local optimization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
PAMI-9(2):229–244.
Lawton, D. T. (1983). Processing translational motion se-
quences. Computer Vision, Graphics, and Image Pro-
cessing, 22(1):116–144.
Lucas, B. D. and Kanade, T. (1981). An iterative image
registration technique with an application to stereo vi-
sion. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence - Volume 2, IJ-
CAI’81, page 674–679, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.
Luke
ˇ
zi
ˇ
c, A., Voj
´
ı
ˇ
r, T.,
ˇ
Cehovin Zajc, L., Matas, J., and
Kristan, M. (2018). Discriminative correlation filter
tracker with channel and spatial reliability. Interna-
tional Journal of Computer Vision, 126(7):671–688.
Matej, K. et al. (2016). The visual object tracking vot2016
challenge results. In European Conference on Com-
puter Vision (ECCV) Workshops.
Ourahmoune, A., Larabi, S., and Hamitouche-Djabou, C.
(2012). A survey of echographic simulators. In Gi-
amberardino, P. D., Iacoviello, D., Tavares, J. M.
R. S., and Jorge, R. M. N., editors, Computational
Modelling of Objects Represented in Images - Fun-
damentals, Methods and Applications III, Third Inter-
national Symposium, CompIMAGE 2012, Rome, Italy,
September 5-7, 2012, pages 273–276. CRC Press.
Pan, J. and Tompkins, W. J. (1985). A real-time qrs de-
tection algorithm. IEEE transactions on biomedical
engineering, BME-32(3):230–236.
Puybareau, E., Talbot, H., and L
´
eonard, M. (2015). Auto-
mated heart rate estimation in fish embryo. In 2015
International Conference on Image Processing The-
ory, Tools and Applications (IPTA), pages 379–384.
IEEE.
Roffo, G., Kristan, M., Matas, J., Felsberg, M., Pfugfelder,
R., Cehovin, L., Vojjir, T., Hager, G., Melzi, S., and
Fernandez, G. (2016). The visual object tracking
vot2016 challenge results. In Proceedings of the IEEE
European Conference on Computer Vision Workshops
(ECCV), Amsterdam, The Netherlands, pages 8–16.
Sampat, M. P., Wang, Z., Gupta, S., Bovik, A. C., and
Markey, M. K. (2009). Complex wavelet structural
similarity: A new image similarity index. IEEE trans-
actions on image processing, 18(11):2385–2401.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visi-
bility to structural similarity. IEEE transactions on
image processing, 13(4):600–612.
Wu, Y., Lim, J., and Yang, M. (2015). Object tracking
benchmark. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 37(9):1834–1848.
Xu, K., G
´
abor Csap
´
o, T., Roussel, P., and Denby, B. (2016).
A comparative study on the contour tracking algo-
rithms in ultrasound tongue images with automatic re-
initialization. The Journal of the Acoustical Society of
America, 139(5):EL154–EL160.
Heart Rate Estimation based on Optical Flow: Enabling Smooth Angle Changes in Ultrasound Simulation
243