ternational Conference on Image Processing, pages
2005–2008. IEEE.
Li, Y., Lee, C., and Monga, V. (2016). A maximum a pos-
teriori estimation framework for robust high dynamic
range video synthesis. IEEE Transactions on Image
Processing, 26(3):1143–1157.
Liu, C. et al. (2009). Beyond pixels: exploring new repre-
sentations and applications for motion analysis. PhD
thesis, Massachusetts Institute of Technology.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the seventh
IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee.
Ma, K., Li, H., Yong, H., Wang, Z., Meng, D., and Zhang,
L. (2017). Robust multi-exposure image fusion: A
structural patch decomposition approach. IEEE Trans.
Image Processing, 26(5):2519–2532.
Mangiat, S. and Gibson, J. (2010). High dynamic range
video with ghost removal. In Applications of Digital
Image Processing XXXIII, volume 7798, page 779812.
International Society for Optics and Photonics.
Martorell, O., Sbert, C., and Buades, A. (2019). Ghosting-
free dct based multi-exposure image fusion. Signal
Processing: Image Communication, 78:409–425.
Mertens, T., Kautz, J., and Van Reeth, F. (2009). Expo-
sure Fusion: A Simple and Practical Alternative to
High Dynamic Range Photography. Computer Graph-
ics Forum.
Musil, M., Nosko, S., and Zemcik, P. (2020). De-ghosted
hdr video acquisition for embedded systems. Journal
of Real-Time Image Processing, pages 1–10.
Ranjan, A. and Black, M. J. (2017). Optical flow estimation
using a spatial pyramid network. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 4161–4170.
Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P.
(2005). High Dynamic Range Imaging: Acquisi-
tion, Display, and Image-Based Lighting (The Mor-
gan Kaufmann Series in Computer Graphics). Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA.
Salgado, A. and S
´
anchez, J. (2007). Temporal constraints in
large optical flow estimation. In International Confer-
ence on Computer Aided Systems Theory, pages 709–
716. Springer.
S
´
anchez, J., Salgado de la Nuez, A. J., and Monz
´
on, N.
(2013). Optical flow estimation with consistent spatio-
temporal coherence models.
S
´
anchez P
´
erez, J., Monz
´
on L
´
opez, N., and Salgado de la
Nuez, A. (2013). Robust Optical Flow Estimation.
Image Processing On Line, 3:252–270.
Tocci, M. D., Kiser, C., Tocci, N., and Sen, P. (2011). A
versatile hdr video production system. ACM Transac-
tions on Graphics (TOG), 30(4):1–10.
Van Vo, T. and Lee, C. (2020). High dynamic range
video synthesis using superpixel-based illuminance-
invariant motion estimation. IEEE Access, 8:24576–
24587.
Volz, S., Bruhn, A., Valgaerts, L., and Zimmer, H. (2011).
Modeling temporal coherence for optical flow. In
2011 International Conference on Computer Vision,
pages 1116–1123. IEEE.
Wang, T.-C., Zhu, J.-Y., Kalantari, N. K., Efros, A. A., and
Ramamoorthi, R. (2017). Light field video capture
using a learning-based hybrid imaging system. ACM
Transactions on Graphics (TOG), 36(4):1–13.
Weickert, J. and Schn
¨
orr, C. (2001). Variational optic flow
computation with a spatio-temporal smoothness con-
straint. Journal of mathematical imaging and vision,
14(3):245–255.
Zhao, H., Shi, B., Fernandez-Cull, C., Yeung, S.-K., and
Raskar, R. (2015). Unbounded high dynamic range
photography using a modulo camera. In 2015 IEEE
International Conference on Computational Photog-
raphy (ICCP), pages 1–10. IEEE.
Variational Temporal Optical Flow for Multi-exposure Video
673