ACKNOWLEDGEMENTS
We would like to acknowledge William Peeler for his
assistance in data acquisition and preparation of the
data for research. Funding for this study was provided
by an Advanced Analytics Grant from IBM and
Canadian Institute for Military and Veteran Health
Research (CIMVHR).
REFERENCES
Bi, Y., Wang, T., Xu, M., Xu, Y., Li, M., Lu, J., ... & Ning,
G. (2012). Advanced research on risk factors of type 2
diabetes. Diabetes/metabolism research and reviews,
28, 32-39.
Birjais, R., Mourya, A. K., Chauhan, R., & Kaur, H. (2019).
Prediction and diagnosis of future diabetes risk: a
machine learning approach. SN Applied Sciences, 1(9),
1-8.
Brownlee, J. (2020). Imbalanced classification with
Python: better metrics, balance skewed classes, cost-
sensitive learning. Machine Learning Mastery.
Chen, L., Zeng, W. M., Cai, Y. D., Feng, K. Y., & Chou,
K. C. (2012). Predicting anatomical therapeutic
chemical (ATC) classification of drugs by integrating
chemical-chemical interactions and similarities. PloS
one, 7(4), e35254
Chahil, T. J., & Ginsberg, H. N. (2006). Diabetic
dyslipidemia. Endocrinology and Metabolism Clinics,
35(3), 491-510.
De Silva, K., Jönsson, D., & Demmer, R. T. (2020). A
combined strategy of feature selection and machine
learning to identify predictors of prediabetes. Journal of
the American Medical Informatics Association, 27(3),
396-406.
Deshpande, A. D., Harris-Hayes, M., & Schootman, M.
(2008). Epidemiology of diabetes and diabetes-related
complications. Physical therapy, 88(11), 1254-1264.
Diabetes Canada. (2021). Canadian Diabetes Association:
https://www.diabetes.ca/DiabetesCanadaWebsite/medi
a/Advocacy-and-Policy/Backgrounder/
2020_Backgrounder_Canada_English_FINAL.pdf
Hur, J.H., Ihm, S.Y. and Park, Y.H., 2017. A variable
impacts measurement in random forest for mobile cloud
computing. Wireless communications and mobile
computing, 2017.
Kaur, H., & Kumari, V. (2020). Predictive modelling and
analytics for diabetes using a machine learning
approach. Applied computing and informatics.
Lindström, J., & Tuomilehto, J. (2003). The diabetes risk
score: a practical tool to predict type 2 diabetes risk.
Diabetes care, 26(3), 725-731.
Moore, R., Lopes, J. (1999). Paper templates. In
TEMPLATE’06, 1st International Conference on
Template Production. SCITEPRESS.
Mooradian, A. D. (2009). Dyslipidemia in type 2 diabetes
mellitus. Nature Reviews Endocrinology, 5(3), 150-
159.
Muhammad, L. J., Algehyne, E. A., & Usman, S. S. (2020).
Predictive supervised machine learning models for
diabetes mellitus. SN Computer Science, 1(5), 1-10.
Nai-arun, N., & Moungmai, R. (2015). Comparison of
classifiers for the risk of diabetes prediction. Procedia
Computer Science, 69, 132-142.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V. and Vanderplas, J., 2011.
Scikit-learn: Machine learning in Python. the Journal of
machine Learning research, 12, pp.2825-2830.
Piva, S. R., Susko, A. M., Khoja, S. S., Josbeno, D. A.,
Fitzgerald, G. K., & Toledo, F. G. (2015). Links
between osteoarthritis and diabetes: implications for
management from a physical activity perspective.
Clinics in geriatric medicine, 31(1), 67-87.
Riddle, M. C., Bakris, G., Blonde, L., & Boulton, A. (2019).
American Diabetes Association standards of medical
care in diabetes–2019. Diabetes Care, 42(Suppl 1),
S34-60.
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B.,
Karuranga, S., Unwin, N., ... & IDF Diabetes Atlas
Committee. (2019). Global and regional diabetes
prevalence estimates for 2019 and projections for 2030
and 2045: Results from the International Diabetes
Federation Diabetes Atlas. Diabetes research and
clinical practice, 157, 107843.
Sami, W., Ansari, T., Butt, N. S., & Ab Hamid, M. R.
(2017). Effect of diet on type 2 diabetes mellitus: A
review. International journal of health sciences, 11(2),
65.
Sisodia, D., & Sisodia, D. S. (2018). Prediction of diabetes
using classification algorithms. Procedia computer
science, 132, 1578-1585.
Stubbs, R., Wilson, K., & Rostami, S. (2019). Hyper-
parameter Optimisation by Restrained Stochastic Hill
Climbing. In UK Workshop on Computational
Intelligence (pp. 189-200). Springer, Cham.
Sowers, J. R., Epstein, M., & Frohlich, E. D. (2001).
Diabetes, hypertension, and cardiovascular disease: an
update. Hypertension, 37(4), 1053-1059.
Wei, S., Zhao, X., & Miao, C. (2018). A comprehensive
exploration to the machine learning techniques for
diabetes identification. In 2018 IEEE 4th World Forum
on Internet of Things (WF-IoT) (pp. 291-295). IEEE.
WHO (2021). Diabetes. https://www.who.int/health-
topics/diabetes
Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., & Tang, H. (2018).
Predicting diabetes mellitus with machine learning
techniques. Frontiers in genetics, 9, 515.