Aggregating local descriptors into a compact image
representation. In 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
pages 3304–3311.
Kalantidis, Y., Mellina, C., and Osindero, S. (2016). Cross-
Dimensional Weighting for Aggregated Deep Convo-
lutional Features. In Computer Vision – ECCV 2016
Workshops, pages 685–701. Springer, Cham, Switzer-
land.
Klokov, R. and Lempitsky, V. (2017). Escape from cells:
Deep kd-networks for the recognition of 3d point
cloud models. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 863–872.
Liu, Z., Zhou, S., Suo, C., Yin, P., Chen, W., Wang, H., Li,
H., and Liu, Y. (2019). Lpd-net: 3d point cloud learn-
ing for large-scale place recognition and environment
analysis. In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 2831–2840.
Losson, O., Macaire, L., and Yang, Y. (2010). Comparison
of color demosaicing methods. In Advances in Imag-
ing and Electron Physics, volume 162, pages 173–
265. Elsevier.
Lowe, D. G. (2004). Distinctive Image Features from Scale-
Invariant Keypoints. Int. J. Comput. Vision, 60(2):91–
110.
Lowry, S., S
¨
underhauf, N., Newman, P., Leonard, J. J.,
Cox, D., Corke, P., and Milford, M. J. (2016). Vi-
sual place recognition: A survey. IEEE Transactions
on Robotics, 32(1):1–19.
Maddern, W., Pascoe, G., Linegar, C., and Newman, P.
(2017). 1 year, 1000 km: The oxford robotcar
dataset. The International Journal of Robotics Re-
search, 36(1):3–15.
Martinez, J., Doubov, S., Fan, J., B
ˆ
arsan, l. A., Wang, S.,
M
´
attyus, G., and Urtasun, R. (2020). Pit30m: A
benchmark for global localization in the age of self-
driving cars. In 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
4477–4484.
Masone, C. and Caputo, B. (2021). A survey on deep visual
place recognition. IEEE Access, 9:19516–19547.
Milford, M. J. and Wyeth, G. F. (2012). Seqslam: Vi-
sual route-based navigation for sunny summer days
and stormy winter nights. In 2012 IEEE International
Conference on Robotics and Automation, pages 1643–
1649.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., K
¨
opf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library. ArXiv, abs/1912.01703.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. arXiv preprint arXiv:1706.02413.
Radenovi
´
c, F., Tolias, G., and Chum, O. (2019). Fine-tuning
cnn image retrieval with no human annotation. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 41(7):1655–1668.
Radenovi
´
c, F., Tolias, G., and Chum, O. (2016). CNN
image retrieval learns from BoW: Unsupervised fine-
tuning with hard examples. In ECCV.
Radenovi
´
c, F., Tolias, G., and Chum, O. (2018). Deep shape
matching. In ECCV.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.
Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point
feature histograms (fpfh) for 3d registration. In 2009
IEEE International Conference on Robotics and Au-
tomation, pages 3212–3217.
Shi, B., Bai, S., Zhou, Z., and Bai, X. (2015). Deeppano:
Deep panoramic representation for 3-d shape recogni-
tion. IEEE Signal Processing Letters, 22(12):2339–
2343.
Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E.
(2015). Multi-view convolutional neural networks for
3d shape recognition. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 945–
953.
Tolias, G., Sicre, R., and J
´
egou, H. (2016a). Particular
Object Retrieval With Integral Max-Pooling of CNN
Activations. In ICL 2016 - RInternational Confer-
ence on Learning Representations, International Con-
ference on Learning Representations, pages 1–12, San
Juan, Puerto Rico.
Tolias, G., Sicre, R., and J
´
egou, H. (2016b). Particular ob-
ject retrieval with integral max-pooling of cnn activa-
tions.
Torii, A., Arandjelovi
´
c, R., Sivic, J., Okutomi, M., and Pa-
jdla, T. (2015). 24/7 place recognition by view syn-
thesis. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1808–1817.
Uy, M. A. and Lee, G. H. (2018). Pointnetvlad: Deep point
cloud based retrieval for large-scale place recognition.
In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4470–4479.
Yandex, A. B. and Lempitsky, V. (2015). Aggregating local
deep features for image retrieval. In 2015 IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 1269–1277.
Zhang, W. and Xiao, C. (2019). Pcan: 3d attention map
learning using contextual information for point cloud
based retrieval. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 12428–12437.
Zhang, X., Wang, L., and Su, Y. (2021). Visual place recog-
nition: A survey from deep learning perspective. Pat-
tern Recognition, 113:107760.
Zou, C., He, B., Zhu, M., Zhang, L., and Zhang, J. (2019).
Learning motion field of lidar point cloud with con-
volutional networks. Pattern Recognition Letters,
125:514–520.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
658