REFERENCES
Biometrics Ltd (2021). Datalog MWX8. ttp://www.
biometricsltd.com/datalog.tm. Accessed: 26.11.2021.
Chen, X.-B., Zhou, Y.-X., Wang, H.-P., L
¨
u, X.-Y., and
Wang, Z.-G. (2017). Design of sEMG-detecting Cir-
cuit for EMG-Bridge. In Proc. of 39th Annual Int’l
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pages 382–385.
Chun, S., Kim, J., Pang, C., et al. (2019). A Trans-
parent, Glue-free, Skin-attachable Graphene Pressure
Sensor with Micropillars for Skin-elasticity Measure-
ment. Nanotechnology, 30(33):335501.
Da Silva, H. P., Guerreiro, J., Lourenc¸o, A., Fred, A., and
Martins, R. (2014). BITalino: A Novel Hardware
Framework for Physiological Computing. In PhyCS,
pages 246–253.
Delsys (2021). Trigno Research+. ttps://delsys.com/trigno/
researc/. Accessed: 26.11.2021.
Di Flumeri, G., Aric
`
o, P., Borghini, G., Sciaraffa, N.,
Di Florio, A., and Babiloni, F. (2019). The dry rev-
olution: evaluation of three different eeg dry electrode
types in terms of signal spectral features, mental states
classification and usability. Sensors, 19(6):1365.
Ergeneci, M., Gokcesu, K., Ertan, E., and Kosmas, P.
(2018a). An embedded, eight channel, noise can-
celing, wireless, wearable semg data acquisition sys-
tem with adaptive muscle contraction detection. IEEE
Transactions on Biomedical Circuits and Systems,
12(1):68–79.
Ergeneci, M., Gokcesu, K., Ertan, E., and Kosmas, P.
(2018b). An embedded, eight channel, noise can-
celing, wireless, wearable semg data acquisition sys-
tem with adaptive muscle contraction detection. IEEE
Transactions on Biomedical Circuits and Systems,
12(1):68–79.
Fayyaz Shahandashti, P., Pourkheyrollah, H., Jahanshahi,
A., and Ghafoorifard, H. (2019). Highly con-
formable stretchable dry electrodes based on in-
expensive flex substrate for long-term biopotential
(EMG/ECG) monitoring. Sensors and Actuators A:
Physical, 295:678–686.
Ferraz, R. d. S., Fonseca, R. S. d., Rodrigues, I. T., Silva, C.
B. d., et al. (2021). Surface electromyographic signal
acquisition system for real time monitoring of upper
limbs muscles. Journal of Computational and Theo-
retical Nanoscience, 18(4):1147–1152.
Franco, T., Henriques, P. R., Alves, P., et al. (2021). System
Architecture for Home Muscle Rehabilitation Treat-
ment. In Submitted to the 10th World Conference on
Information Systems and Technologies.
Koh, A., Kang, D., Xue, Y., Lee, S., Pielak, R. M.,
Kim, J., Hwang, T., Min, S., Banks, A., Bastien,
P., et al. (2016). A soft, wearable microfluidic
device for the capture, storage, and colorimetric
sensing of sweat. Science translational medicine,
8(366):366ra165–366ra165.
Li, X., Zhou, Z., Ji, M., and Liu, W. (2021). A
wearable wireless device designed for surface elec-
tromyography acquisition. Microsystem Technologies,
27(4):1787–1795.
Lou, Z., Wang, L., Jiang, K., Wei, Z., and Shen, G. (2020).
Reviews of wearable healthcare systems: Materials,
devices and system integration. Materials Science and
Engineering: R: Reports, 140:100523.
Lynch, C. L. and Popovic, M. R. (2008). Functional elec-
trical stimulation. IEEE control systems magazine,
28(2):40–50.
Park, H.-K., Jung, J., Lee, D.-W., Shin, H. C.,
Lee, H.-J., and Lee, W.-H. (2021). A wear-
able electromyography-controlled functional electri-
cal stimulation system improves balance, gait func-
tion, and symmetry in older adults. Technology and
Health Care, (Preprint):1–13.
Peng, H.-L., Jing-Quan Liu, Tian, H.-C., Dong, Y.-Z., Yang,
B., Chen, X., and Yang, C.-S. (2016). A novel passive
electrode based on porous ti for eeg recording. Sen-
sors and Actuators B: Chemical, 226:349–356.
Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen,
G., and Whittlesey, S. (2013). Research methods in
biomechanics. Human kinetics.
Rodrigues, M., Fiedler, P., K
¨
uchler, N., P. Domingues, R.,
Lopes, C., Borges, J., Haueisen, J., and Vaz, F. (2020).
Dry electrodes for surface electromyography based on
architectured titanium thin films. Materials, 13(9).
Tallgren, P., Vanhatalo, S., Kaila, K., and Voipio, J. (2005).
Evaluation of commercially available electrodes and
gels for recording of slow eeg potentials. Clinical
Neurophysiology, 116(4):799–806.
Trung, T. Q. and Lee, N.-E. (2016). Flexible and stretch-
able physical sensor integrated platforms for wear-
able human-activity monitoringand personal health-
care. Advanced materials, 28(22):4338–4372.
Zhu, L., Mao, G., Su, H., Zhou, Z., Li, W., L
¨
u, X., and
Wang, Z. (2021). A wearable, high-resolution, and
wireless system for multichannel surface electromyo-
graphy detection. IEEE Sensors Journal, 21(8):9937–
9948.
BIODEVICES 2022 - 15th International Conference on Biomedical Electronics and Devices
230