of disease risk by using genomic, clinical, and envi-
ronmental data. In 2013 USENIX Workshop on Health
Information Technologies (HealthTech 13).
Bragin, E., Chatzimichali, E. A., Wright, C. F., Hurles,
M. E., Firth, H. V., Bevan, A. P., and Swaminathan,
G. J. (2014). DECIPHER: database for the interpre-
tation of phenotype-linked plausibly pathogenic se-
quence and copy-number variation. Nucleic acids re-
search, 42(D1):D993–D1000.
Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2014).
(leveled) fully homomorphic encryption without boot-
strapping. ACM Transactions on Computation Theory
(TOCT), 6(3):1–36.
Chen, H., Laine, K., and Player, R. (2017). Simple en-
crypted arithmetic library-SEAL v2. 1. In Inter-
national Conference on Financial Cryptography and
Data Security, pages 3–18. Springer.
Decouchant, J., Fernandes, M., Völp, M., Couto, F. M.,
and Esteves-Veríssimo, P. (2018). Accurate filtering
of privacy-sensitive information in raw genomic data.
Journal of Biomedical Informatics, 82:1–12.
Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In Proceedings of the forty-first annual
ACM symposium on Theory of computing, pages 169–
178.
Gymrek, M., McGuire, A. L., Golan, D., Halperin, E., and
Erlich, Y. (2013). Identifying Personal Genomes by
Surname Inference. Science, 339(6117):321–324.
Jagadeesh, K. A., Wu, D. J., Birgmeier, J. A., Boneh, D.,
and Bejerano, G. (2017). Deriving genomic diag-
noses without revealing patient genomes. Science,
357(6352):692–695.
Joober, R. and Boksa, P. (2009). A new wave in the genet-
ics of psychiatric disorders: the copy number variant
tsunami. Journal of psychiatry & neuroscience: JPN,
34(1):55.
Kakimi, K., Karasaki, T., Matsushita, H., and Sugie, T.
(2017). Advances in personalized cancer immunother-
apy. Breast cancer (Tokyo, Japan), 24(1):16—24.
Leinonen, R., Sugawara, H., Shumway, M., and Collabora-
tion, I. N. S. D. (2010). The sequence read archive.
Nucleic acids research, 39(suppl_1):D19–D21.
Li, Y. R., Glessner, J. T., Coe, B. P., Li, J., Mohebnasab,
M., Chang, X., Connolly, J., Kao, C., Wei, Z., Brad-
field, J., et al. (2020). Rare copy number variants in
over 100,000 European ancestry subjects reveal mul-
tiple disease associations. Nature communications,
11(1):1–9.
MacDonald, J. R., Ziman, R., Yuen, R. K., Feuk, L.,
and Scherer, S. W. (2014). The database of ge-
nomic variants: a curated collection of structural vari-
ation in the human genome. Nucleic acids research,
42(D1):D986–D992.
Magi, A., Tattini, L., Cifola, I., D’Aurizio, R., Benelli,
M., Mangano, E., Battaglia, C., Bonora, E., Kurg, A.,
Seri, M., et al. (2013). EXCAVATOR: detecting copy
number variants from whole-exome sequencing data.
Genome biology, 14(10):R120.
Marshall, C. R., Howrigan, D. P., Merico, D., Thiruvahin-
drapuram, B., Wu, W., Greer, D. S., Antaki, D.,
Shetty, A., Holmans, P. A., Pinto, D., et al. (2017).
Contribution of copy number variants to schizophre-
nia from a genome-wide study of 41,321 subjects. Na-
ture genetics, 49(1):27–35.
Moreno-Cabrera, J. M., Del Valle, J., Castellanos, E., Feli-
ubadaló, L., Pineda, M., Brunet, J., Serra, E., Capellà,
G., Lázaro, C., and Gel, B. (2020). Evaluation of CNV
detection tools for NGS panel data in genetic diagnos-
tics. European Journal of Human Genetics, pages 1–
11.
Naveed, M., Ayday, E., Clayton, E. W., Fellay, J., Gunter,
C. A., Hubaux, J.-P., Malin, B. A., and Wang, X.
(2015). Privacy in the Genomic Era. ACM Comput.
Surv., 48(1).
Pfarr, N., Penzel, R., Klauschen, F., Heim, D., Brandt,
R., Kazdal, D., Jesinghaus, M., Herpel, E., Schir-
macher, P., Warth, A., et al. (2016). Copy number
changes of clinically actionable genes in melanoma,
non-small cell lung cancer and colorectal cancer—A
survey across 822 routine diagnostic cases. Genes,
Chromosomes and Cancer, 55(11):821–833.
Regev, O. (2009). On lattices, learning with errors, random
linear codes, and cryptography. Journal of the ACM
(JACM), 56(6):1–40.
Shao, X., Lv, N., Liao, J., Long, J., Xue, R., Ai, N., Xu,
D., and Fan, X. (2019). Copy number variation is
highly correlated with differential gene expression: a
pan-cancer study. BMC medical genetics, 20(1):175.
Shlien, A. and Malkin, D. (2009). Copy number variations
and cancer. Genome medicine, 1(6):1–9.
Simmons, S., Sahinalp, C., and Berger, B. B. (2016). En-
abling Privacy-Preserving GWASs in Heterogeneous
Human Populations. Cell Systems, 3(1):54 – 61.
Wang, S., Zhang, Y., Dai, W., Lauter, K., Kim, M., Tang,
Y., Xiong, H., and Jiang, X. (2016). HEALER: homo-
morphic computation of ExAct Logistic rEgRession
for secure rare disease variants analysis in GWAS.
Bioinformatics, 32(2):211–218.
Yoon, S., Xuan, Z., Makarov, V., Ye, K., and Sebat, J.
(2009). Sensitive and accurate detection of copy num-
ber variants using read depth of coverage. Genome
research, 19(9):1586–1592.
Zarrei, M., MacDonald, J. R., Merico, D., and Scherer,
S. W. (2015). A copy number variation map of the
human genome. Nature reviews genetics, 16(3):172–
183.
Zhang, F., Gu, W., Hurles, M. E., and Lupski, J. R. (2009).
Copy number variation in human health, disease, and
evolution. Annual review of genomics and human ge-
netics, 10:451–481.
Zhang, L., Bai, W., Yuan, N., and Du, Z. (2019). Com-
prehensively benchmarking applications for detecting
copy number variation. PLoS computational biology,
15(5):e1007069.
Privacy-preserving Copy Number Variation Analysis with Homomorphic Encryption
831