REFERENCES
Ambrosy, A. P., Parikh, R. V., Sung, S. H., Narayanan, A.,
Masson, R., Lam, P. Q., ... & Go, A. S. (2021). A
Natural Language Processing–Based Approach for
Identifying Hospitalizations for Worsening Heart
Failure Within an Integrated Health Care Delivery
System. JAMA Network Open, 4(11), e2135152-
e2135152.
Arnaud, É., Elbattah, M., Gignon, M., & Dequen, G. (2021).
NLP-Based Prediction of Medical Specialties at
Hospital Admission Using Triage Notes. In
Proceedings of the 9th International Conference on
Healthcare Informatics (ICHI) (pp. 548-553). IEEE.
Barrus, T. (2021). GitHub Repo:
https://github.com/barrust/pyspellchecker
Bird, S., Klein, E., & Loper, E. (2009). Natural language
processing with Python: analyzing text with the natural
language toolkit. O'Reilly Media, Inc.
Cai, Z., Zhang, T., Wang, C., & He, X. (2021). EMBERT:
A Pre-trained Language Model for Chinese Medical
Text Mining. In Proceedings of Joint International
Conference on Web and Big Data (pp. 242-257).
Springer, Cham.
Chang, D., Hong, W. S., & Taylor, R. A. (2020). Generating
contextual embeddings for emergency department chief
complaints. JAMIA Open, 3(2), 160-166.
Chintalapudi, N., Battineni, G., & Amenta, F. (2021).
Sentimental Analysis of COVID-19 Tweets Using
Deep Learning Models. Infectious Disease Reports,
13(2), 329-339.
Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In
Proceedings of the Annual Conference of the North
American Chapter of the Association for
Computational Linguistics (NAACL-HLT).
Elbattah, M., Arnaud, E., Gignon, M., & Dequen, G.
(2021). The role of text analytics in healthcare: A
review of recent developments and applications. In
Proceedings of the 14th International Joint Conf. on
Biomedical Engineering Systems and Technologies
(BIOSTEC).
Fowlkes, E. B., & Mallows, C. L. (1983). A method for
comparing two hierarchical clusterings. Journal of the
American Statistical Association, 78(383), 553-569.
Hao, T., Huang, Z., Liang, L., Weng, H., & Tang, B. (2021).
Health Natural Language Processing: Methodology
Development and Applications. JMIR Medical
Informatics, 9(10), e23898.
Kim, Y. M., & Lee, T. H. (2020). Korean clinical entity
recognition from diagnosis text using BERT. BMC
Medical Informatics and Decision Making, 20(7), 1-9.
Le, H., Vial, L., Frej, J., Segonne, V., Coavoux, M.,
Lecouteux, B., ... & Schwab, D. (2019). Flaubert:
Unsupervised language model pre-training for French.
arXiv preprint arXiv:1912.05372.
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W. E., and Jackel, L. D.
(1989). Handwritten digit recognition with a back-
propagation network. In Proceedings of Advances in
Neural Information Processing Systems (NIPS) (pp.
396-404).
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document
recognition.
In Proceedings of the IEEE, 86(11), 2278-
2324.
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M.,
Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2019).
Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ...
& Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach. arXiv preprint
arXiv:1907.11692.
Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad,
M., ... & Zettlemoyer, L. (2020). Multilingual denoising
pre-training for neural machine translation.
Transactions of the Association for Computational
Linguistics, 8, 726-742.
Liu, G., Liao, Y., Wang, F., Zhang, B., Zhang, L., Liang,
X., ... & Cui, S. (2021). Medical-vlbert: Medical visual
language BERT for COVID-19 CT report generation
with alternate learning. IEEE Transactions on Neural
Networks and Learning Systems, 32(9), 3786-3797.
Martin, L., Muller, B., Suárez, P. J. O., Dupont, Y., Romary,
L., de La Clergerie, É. V., ... & Sagot, B. (2019).
Camembert: a tasty French language model. arXiv
preprint arXiv:1911.03894.
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning.
IEEE Transactions on Knowledge and Data
Engineering, 22(10), 1345-1359.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., ... & Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825-2830.
Peterson, K. J., Jiang, G., & Liu, H. (2020). A corpus-driven
standardization framework for encoding clinical
problems with HL7 FHIR. Journal of Biomedical
Informatics, 110, 103541.
Rasmy, L., Xiang, Y., Xie, Z., Tao, C., & Zhi, D. (2021).
Med-BERT: pretrained contextualized embeddings on
large-scale structured electronic health records for
disease prediction. NPJ Digital Medicine, 4(1), 1-13.
Reimers, N., & Gurevych, I. (2019). Sentence-BERT:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal
of Computational and Applied Mathematics, 20, 53-65.
Suárez, P. J. O., Sagot, B., & Romary, L. (2019).
Asynchronous pipeline for processing huge corpora on
medium to low resource infrastructures. In Proceedings
of the 7th Workshop on the Challenges in the
Management of Large Corpora (CMLC-7).
Tahayori, B., Chini-Foroush, N., & Akhlaghi, H. (2021).
Advanced natural language processing technique to
predict patient disposition based on emergency triage