Kofler, M., Beham, A., Wagner, S., & Affenzeller, M.
(2014). Affinity Based Slotting in Warehouses with
Dynamic Order Patterns. Advanced Methods and
Applications in Computational Intelligence, 123–143.
Koster, R. de, Le-Duc, T., & Roodbergen, K. J. (2007).
Design and control of warehouse order picking: A
literature review. European Journal of Operational
Research, 182(2), 481–501.
Kübler, P., Glock, C. H., & Bauernhansl, T. (2020). A new
iterative method for solving the joint dynamic storage
location assignment, order batching and picker routing
problem in manual picker-to-parts warehouses.
Computers & Industrial Engineering, 147, 106645.
Larco, J. A., Koster, R. de, Roodbergen, K. J., & Dul, J.
(2017). Managing warehouse efficiency and worker
discomfort through enhanced storage assignment
decisions. International Journal of Production
Research, 55(21), 6407–6422. https://doi.org/10.1080/
00207543.2016.1165880
Lee, I. G., Chung, S. H., & Yoon, S. W. (2020). Two-stage
storage assignment to minimize travel time and
congestion for warehouse order picking operations.
Computers & Industrial Engineering, 139, 106129.
https://doi.org/10.1016/j.cie.2019.106129
Mantel, R., Schuur, P., & Heragu, S. (2007). Order oriented
slotting: A new assignment strategy for warehouses.
European Journal of Industrial Engineering, 1, 301–
316.
Oxenstierna, J., Malec, J., & Krueger, V. (2021). Layout-
Agnostic Order-Batching Optimization. International
Conference on Computational Logistics, 115–129.
Oxenstierna, J., Malec, J., & Krueger, V. (2022). Analysis
of Computational Efficiency in Iterative Order
Batching Optimization. Proceedings of the 11th
International Conference on Operations Research and
Enterprise Systems - ICORES, 345–353.
https://doi.org/10.5220/0010837700003117
Oxenstierna, J., van Rensburg, L. J., Malec, J., & Krueger,
V. (2021). Formulation of a Layout-Agnostic Order
Batching Problem. In B. Dorronsoro, L. Amodeo, M.
Pavone, & P. Ruiz (Eds.), Optimization and Learning
(pp. 216–226). Springer International Publishing.
Ratliff, H., & Rosenthal, A. (1983). Order-Picking in a
Rectangular Warehouse: A Solvable Case of the
Traveling Salesman Problem. Operations Research, 31,
507–521.
Reinelt, G. (1991). TSPLIB - A Traveling Salesman
Problem Library. INFORMS J. Comput., 3, 376–384.
Rensburg, L. J. van. (2019). Artificial intelligence for
warehouse picking optimization—An NP-hard problem
[Master’s Thesis]. Uppsala University.
Roodbergen, K. J., & Koster, R. (2001). Routing methods
for warehouses with multiple cross aisles. International
Journal of Production Research
, 39(9), 1865–1883.
Wu, J., Qin, T., Chen, J., Si, H., & Lin, K. (2014). Slotting
Optimization Algorithm of the Stereo Warehouse.
Proceedings of the 2012 2nd International Conference
on Computer and Information Application (ICCIA
2012), 128–132. https://doi.org/10.2991/iccia.2012.31
Wutthisirisart, P., Noble, J. S., & Chang, C. A. (2015). A
two-phased heuristic for relation-based item location.
Computers & Industrial Engineering, 82, 94–102.
https://doi.org/10.1016/j.cie.2015.01.020
Xiang, X., Liu, C., & Miao, L. (2018). Storage assignment
and order batching problem in Kiva mobile fulfilment
system. Engineering Optimization, 50(11), 1941–1962.
https://doi.org/10.1080/0305215X.2017.1419346
Zhang, R.-Q., Wang, M., & Pan, X. (2019). New model of
the storage location assignment problem considering
demand correlation pattern. Computers & Industrial
Engineering, 129, 210–219.
https://doi.org/10.1016/j.cie.2019.01.027
Žulj, I., Glock, C. H., Grosse, E. H., & Schneider, M.
(2018). Picker routing and storage-assignment
strategies for precedence-constrained order picking.
Computers & Industrial Engineering, 123, 338–347.
https://doi.org/10.1016/j.cie.2018.06.015
APPENDIX
NDCG flowchart: The below example shows how
Normalized Discounted Cumulative Gain (NDCG)
can be computed from input permutations (products
to locations), approximated (𝑓) and ground truth (𝑓
∗
)
values. Note that 𝑓
(
𝑿
)
denotes a sorting of 𝑿
according to the cost valuation of elements in the cost
step. Also note that relevance values can be
formulated in several ways.
Figure 4: NDCG flowchart.