Arnold, F., Gendreau, M., and S
¨
orensen, K. (2019). Ef-
ficiently solving very large-scale routing problems.
Computers & operations research, 107:32–42.
Bogyrbayeva, A., Meraliyev, M., Mustakhov, T., and
Dauletbayev, B. (2022). Learning to solve vehi-
cle routing problems: A survey. arXiv preprint
arXiv:2205.02453.
Breiman, L. (1996). Bagging predictors. Machine learning,
24(2):123–140.
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Burkart, N. and Huber, M. F. (2021). A survey on the ex-
plainability of supervised machine learning. Journal
of Artificial Intelligence Research, 70:245–317.
Carbone, R. and Armstrong, J. S. (1982). Note. evalua-
tion of extrapolative forecasting methods: results of a
survey of academicians and practitioners. Journal of
Forecasting, 1(2):215–217.
Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles
from a central depot to a number of delivery points.
Operations research, 12(4):568–581.
Dondo, R. and Cerd
´
a, J. (2013). A sweep-heuristic based
formulation for the vehicle routing problem with
cross-docking. Computers & Chemical Engineering,
48:293–311.
Dunning, I., Gupta, S., and Silberholz, J. (2018). What
works best when? a systematic evaluation of heuris-
tics for max-cut and qubo. INFORMS Journal on
Computing, 30(3):608–624.
Elshaer, R. and Awad, H. (2020). A taxonomic review of
metaheuristic algorithms for solving the vehicle rout-
ing problem and its variants. Computers & Industrial
Engineering, 140:106242.
Fellers, J., Quevedo, J., Abdelatti, M., Steinhaus, M., and
Sodhi, M. (2021). Selecting between evolutionary and
classical algorithms for the cvrp using machine learn-
ing: optimization of vehicle routing problems. In Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, pages 127–128.
Fix, E. and Hodges, J. L. (1989). Discriminatory analy-
sis. nonparametric discrimination: Consistency prop-
erties. International Statistical Review/Revue Interna-
tionale de Statistique, 57(3):238–247.
Friedman, J. H. (2001). Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189–1232.
Fukushima, K. and Miyake, S. (1982). Neocognitron: A
self-organizing neural network model for a mecha-
nism of visual pattern recognition. In Competition and
cooperation in neural nets, pages 267–285. Springer.
Gillett, B. E. and Miller, L. R. (1974). A heuristic algo-
rithm for the vehicle-dispatch problem. Operations
research, 22(2):340–349.
Haimovich, M. and Rinnooy Kan, A. H. (1985). Bounds
and heuristics for capacitated routing problems. Math-
ematics of operations Research, 10(4):527–542.
Huerta, I. I., Neira, D. A., Ortega, D. A., Varas, V., Godoy,
J., and As
´
ın-Ach
´
a, R. (2022). Improving the state-of-
the-art in the traveling salesman problem: An anytime
automatic algorithm selection. Expert Systems with
Applications, 187:115948.
Kerschke, P., Hoos, H. H., Neumann, F., and Trautmann, H.
(2019). Automated algorithm selection: Survey and
perspectives. Evolutionary computation, 27(1):3–45.
Lin, S. and Kernighan, B. W. (1973). An effective heuristic
algorithm for the traveling-salesman problem. Opera-
tions research, 21(2):498–516.
Lindauer, M., Hoos, H. H., Hutter, F., and Schaub, T.
(2015). Autofolio: An automatically configured al-
gorithm selector. Journal of Artificial Intelligence Re-
search, 53:745–778.
Lindauer, M., van Rijn, J. N., and Kotthoff, L. (2019). The
algorithm selection competitions 2015 and 2017. Ar-
tificial Intelligence, 272:86–100.
L
´
opez-Ib
´
a
˜
nez, M., Dubois-Lacoste, J., C
´
aceres, L. P., Bi-
rattari, M., and St
¨
utzle, T. (2016). The irace package:
Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58.
McCulloch, W. S. and Pitts, W. (1943). A logical calculus
of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5(4):115–133.
Perron, L. and Furnon, V. (2019). Or-tools.
Pessoa, A. A., Poss, M., Sadykov, R., and Vanderbeck, F.
(2021). Branch-cut-and-price for the robust capac-
itated vehicle routing problem with knapsack uncer-
tainty. Operations Research, 69(3):739–754.
Quinlan, J. R. (1986). Induction of decision trees. Machine
learning, 1(1):81–106.
Rice, J. R. (1976). The algorithm selection problem. In Ad-
vances in computers, volume 15, pages 65–118. Else-
vier.
Schapire, R. E. (1997). Using output codes to boost multi-
class learning problems. In ICML, volume 97, pages
313–321. Citeseer.
Schapire, R. E. (2013). Explaining adaboost. In Empirical
inference, pages 37–52. Springer.
Stone, M. (1974). Cross-validatory choice and assessment
of statistical predictions. Journal of the royal statis-
tical society: Series B (Methodological), 36(2):111–
133.
Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-
supervised learning. Synthesis lectures on artificial
intelligence and machine learning, 3(1):1–130.
Fast Algorithms for the Capacitated Vehicle Routing Problem using Machine Learning Selection of Algorithm’s Parameters
39