Table 3: Accuracy of RNN models for AWSD.
Model Accuracy
GRU 92.83%
BiLSTM 90.77 %
LSTM 88.54%
Vanilla RNN 85.22 %
Glove (Alkhatlan et al., 2018) 71.73%
Skip-Gram(Alkhatlan et al., 2018) 82.17%
IR (Bouhriz et al., 2016) 74%
bic language because different datasets are employed.
For example, (El-Razzaz et al., 2021) and (Al-Hajj
and Jarrar, 2021), as already noted, used a Gloss-type
dataset. This variety in models and datasets encour-
ages us to combine our GRU method with the BERT
model in a future contribution (Chouikhi et al., 2021).
6 CONCLUSION
In this paper, we propose a recurrent neural network-
based architecture for Arabic text to solve the prob-
lem of word-sense disambiguation. We validate our
approach through the Arabic WordNet dataset. We
show that that GRU model outperforms the other
RNN models and achieves about a 93 percent of pre-
diction accuracy. As a future work, we plan to use
the more advanced word embedding such as BERT
for the embedding step and combine it with the RNN
models.
REFERENCES
Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H.
(2016). Farasa: A fast and furious segmenter for ara-
bic. In Proceedings of the 2016 conference of the
North American chapter of the association for com-
putational linguistics: Demonstrations, pages 11–16.
Abderrahim, M. A. and Abderrahim, M. E. A. (2018). Ara-
bic word sense disambiguation with conceptual den-
sity for information retrieval. Models and Optimisa-
tion and Mathematical Analysis Journal, 6(1):5–9.
Abood, R. H. and Tiun, S. (2017). A comparative study
of open-domain and specific-domain word sense dis-
ambiguation based on quranic information retrieval.
In MATEC Web of Conferences, volume 135, page
00071. EDP Sciences.
Al-Hajj, M. and Jarrar, M. (2021). Arabglossbert: Fine-
tuning bert on context-gloss pairs for wsd.
Al-Maghasbeh, M. K. A. and Bin Hamzah, M. (2015). Ex-
tract the semantic meaning of prepositions at arabic
texts: an exploratory study. Int J Comput Trends Tech-
nol, 30(3):116–120.
Alian, M., Awajan, A., and Al-Kouz, A. (2016). Word sense
disambiguation for arabic text using wikipedia and
vector space model. International Journal of Speech
Technology, 19(4):857–867.
Alkhatlan, A., Kalita, J., and Alhaddad, A. (2018). Word
sense disambiguation for arabic exploiting arabic
wordnet and word embedding. Procedia computer sci-
ence, 142:50–60.
Apaydin, H., Feizi, H., Sattari, M. T., Colak, M. S.,
Shamshirband, S., and Chau, K.-W. (2020). Compara-
tive analysis of recurrent neural network architectures
for reservoir inflow forecasting. Water, 12(5):1500.
Bakhouche, A., Yamina, T., Schwab, D., and Tchechmed-
jiev, A. (2015). Ant colony algorithm for arabic word
sense disambiguation through english lexical informa-
tion. International Journal of Metadata, Semantics
and Ontologies, 10(3):202–211.
Boughorbel, S., Jarray, F., Venugopal, N., and Elhadi, H.
(2018). Alternating loss correction for preterm-birth
prediction from ehr data with noisy labels. arXiv
preprint arXiv:1811.09782.
Boughorbel, S., Jarray, F., Venugopal, N., Moosa, S.,
Elhadi, H., and Makhlouf, M. (2019). Federated
uncertainty-aware learning for distributed hospital ehr
data. arXiv preprint arXiv:1910.12191.
Bouhriz, N., Benabbou, F., and Lahmar, E. B. (2016). Word
sense disambiguation approach for arabic text. Inter-
national Journal of Advanced Computer Science and
Applications, 7(4):381–385.
Bounhas, I., Elayeb, B., Evrard, F., and Slimani, Y.
(2011). Organizing contextual knowledge for arabic
text disambiguation and terminology extraction. KO
KNOWLEDGE ORGANIZATION, 38(6):473–490.
Chouikhi, H., Chniter, H., and Jarray, F. (2021). Arabic
sentiment analysis using bert model. In International
Conference on Computational Collective Intelligence,
pages 621–632. Springer.
Eid, M. S., Al-Said, A. B., Wanas, N. M., Rashwan, M. A.,
and Hegazy, N. H. (2010). Comparative study of roc-
chio classifier applied to supervised wsd using ara-
bic lexical samples. In Proceedings of the tenth
conference of language engeneering (SEOLEC’2010),
Cairo, Egypt.
El-Gamml, M. M., Fakhr, M. W., Rashwan, M. A., and Al-
Said, A. B. (2011). A comparative study for arabic
word sense disambiguation using document prepro-
cessing and machine learning techniques. ALTIC ,
Alexandria, Egypt.
El-Gedawy, M. N. (2013). Using fuzzifiers to solve word
sense ambiguation in arabic language. International
Journal of Computer Applications, 79(2).
El-Razzaz, M., Fakhr, M. W., and Maghraby, F. A. (2021).
Arabic gloss wsd using bert. Applied Sciences,
11(6):2567.
Elmougy, S., Taher, H., and Noaman, H. (2008). Na
¨
ıve
bayes classifier for arabic word sense disambiguation.
In proceeding of the 6th International Conference on
Informatics and Systems, pages 16–21. Citeseer.
Laatar, R., Aloulou, C., and Belghuith, L. H. (2018).
Word2vec for arabic word sense disambiguation. In
International Conference on Applications of Natural
WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies
276