ents/1754719/hype-cycle-for-emerging-technologies-
2011, accessed on Nov 25 2020.
Gartner. (2014). “Hype Cycle for Emerging Technologies,
2014,” available at https://www.gartner.com/en/docu
ments/2809728, accessed on Jun 14 2022.
Gartner. (2015). “Gartner's 2015 Hype Cycle for Emerging
Technologies Identifies the Computing Innovations
That Organizations Should Monitor,” available at
https://www.gartner.com/en/newsroom/press-
releases/2015-08-18-gartners-2015-hype-cycle-for-
emerging-technologies-identifies-the-computing-
innovations-that-organizations-should-monitor,
accessed on Nov 25 2020.
Gartner. (2022a). “Definition of Big Data - Gartner
Information Technology Glossary,” available at
https://www.gartner.com/en/information-
technology/glossary/big-data, accessed on Mar 5 2022.
Gartner. (2022b). “Gartner Hype Cycle Research
Methodology,” available at https://www.gartner.com/
en/research/methodologies/gartner-hype-cycle, access
ed on Mar 15 2022.
Ghavami, P. (2021). Big data management: Data
governance principles for big data analytics, Berlin: De
Gruyter.
Grandhi, S., and Wibowo, S. (2018). “A Multi-criteria
Group Decision Making Method for Selecting Big Data
Visualization Tools,” Journal of Telecommunication,
Electronic and Computer Engineering (10:1-8), pp. 67-
72.
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S.,
Gani, A., and Ullah Khan, S. (2015). “The rise of “big
data” on cloud computing: Review and open research
issues,” Information Systems (47), pp. 98-115 (doi:
10.1016/j.is.2014.07.006).
Hussein, A. A. (2020). “Fifty-Six Big Data V’s
Characteristics and Proposed Strategies to Overcome
Security and Privacy Challenges (BD2),” Journal of
Information Security (11:04), pp. 304-328 (doi:
10.4236/jis.2020.114019).
IBM. (2013). “Analytics: The real-world use of big data,”
Izadi, D., Abawajy, J. H., Ghanavati, S., and Herawan, T.
(2015). “A data fusion method in wireless sensor
networks,” Sensors (Basel, Switzerland) (15:2), pp.
2964-2979 (doi: 10.3390/s150202964).
Kapil, G., Agrawal, A., and Khan, R. A. (2016). “A study
of big data characteristics,” in Proceedings of the 2016
International Conference on Communication and
Electronics Systems (ICCES), Coimbatore, India.
21.10.2016 - 22.10.2016, pp. 1-4 (doi: 10.1109/CESYS.
2016.7889917).
Katal, A., Wazid, M., and Goudar, R. H. (2013). “Big data:
Issues, challenges, tools and Good practices,” in Sixth
International Conference on Contemporary Computing,
Parashar (ed.), Noida, India. 08.08.2013 - 10.08.2013,
IEEE, pp. 404-409 (doi: 10.1109/IC3.2013.6612229).
Khan, N., Naim, A., Hussain, M. R., Naveed, Q. N., Ahmad,
N., and Qamar, S. (2019). “The 51 V's Of Big Data,” in
Proceedings of the 2019 International Conference on
Omni-Layer Intelligent Systems, Crete Greece.
05.05.2019 - 07.05.2019, New York,NY,United States:
Association for Computing Machinery, pp. 19-24 (doi:
10.1145/3312614.3312623).
Laney, D. (2001). “3D data management: Controlling data
volume, velocity and variety,” META group research
note (6:70).
Manyika, J., Chui, M., Brown, B., Bughin Jacques, Dobbs,
R., Roxburgh, C., Byers, and Angela Hung. (2011).
“Big Data: The next frontier for innovation,
competition, and productivity,” McKinsey (ed.),
McKinsey.
Mayer-Schönberger, V., and Cukier, K. (2013). Big data: A
revolution that will transform how we live, work, and
think, Boston: Houghton Mifflin Harcourt.
Mishra, B. K., Kumar, V., Panda, S. K., and Tiwari, P.
(2021). Handbook of Research for Big Data: Concepts
and Techniques, Milton: Apple Academic Press
Incorporated.
Müller, O., Fay, M., and Vom Brocke, J. (2018). “The
Effect of Big Data and Analytics on Firm Performance:
An Econometric Analysis Considering Industry
Characteristics,” Journal of Management Information
Systems (35:2), pp. 488-509 (doi: 10.1080/07421
222.2018.1451955).
Reinsel, D., Gantz, J., and Rydning, J. (2018). “The
Digitization of the World - From Edge to Core,”
available at https://www.seagate.com/files/www-
content/our-story/trends/files/idc-seagate-dataage-
whitepaper.pdf, accessed on Mar 5 2020.
Schafer, T. (2017). “The 42 V's of Big Data and Data
Science,” available at https://www.kdnuggets.com/
2017/04/42-vs-big-data-data-science.html, accessed on
Jun 12 2022.
Staegemann, D., Volk, M., Nahhas, A., Abdallah, M., and
Turowski, K. (2019). “Exploring the Specificities and
Challenges of Testing Big Data Systems,” in
Proceedings of the 15th International Conference on
Signal Image Technology & Internet based Systems,
Sorrento. 26.11.2019 - 29.11.2019.
Volk, M., Hart, S. W., Bosse, S., and Turowski, K. (2016).
“How much is Big Data? A Classification Framework
for IT Projects and Technologies,” in Proceedings of
the 22nd Americas Conference on Information Systems,
AMCIS 2016, San Diego, CA, USA. 11.08.2016 -
14.08.2016, AIS.
Volk, M., Staegemann, D., Pohl, M., and Turowski, K.
(2019). “Challenging Big Data Engineering:
Positioning of Current and Future Development,” in
Proceedings of the 4th International Conference on
Internet of Things, Big Data and Security, Heraklion,
Crete, Greece. 02.05.2019 - 04.05.2019, SCITEPRESS
- Science and Technology Publications, pp. 351-358
(doi: 10.5220/0007748803510358).
Volk, M., Staegemann, D., and Turowski, K. (2020). “Big
Data,” in Handbuch Digitale Wirtschaft, T. Kollmann
(ed.), Wiesbaden: Springer Fachmedien Wiesbaden, pp.
1-18 (doi: 10.1007/978-3-658-17345-6_71-1).
Ward, J. S., and Barker, A. (2013). “Undefined by data: a
survey of big data definitions,” arXiv preprint
arXiv:1309.5821.