analysis of the metrics that were calculated (see Table
2), will be addressed to complement the preliminary
claims.
Therefore, we can preliminarily claim that
Reto
˜
nosApp positively fosters the educational (i.e.,
teaching and learning) processes. The platform ben-
efits both the teaching and learning processes of pro-
gramming in CS. Moreover, unlike other available ed-
ucational tools, Reto
˜
nosApp has the advantage that it
can nurture the teaching and learning processes since
it incorporates a conversational bot (i.e., virtual tutor)
and a recommendation system (i.e., providing a cus-
tomizable “educational roadmap” and frequent feed-
back). Further research on the tool will be conducted
to support and complement all claims in this paper.
ACKNOWLEDGMENTS
The authors thank all the participants who voluntarily
and actively collaborated in evaluating Reto
˜
nosApp.
Also, the authors thank the Undergraduate Program
of Systems Engineering instructors at Universidad El
Bosque, Colombia, who willingly permitted this pre-
liminary experimentation in their introductory pro-
gramming courses in the early academic semesters.
REFERENCES
Adamopoulou, E. and Moussiades, L. (2020). An overview
of chatbot technology. In IFIP International Confer-
ence on Artificial Intelligence Applications and Inno-
vations, pages 373–383. Springer.
Baque-Reyes, G. R. and Portilla-Faican, G. I. (2021).
El aprendizaje significativo como estrategia did
´
actica
para la ense
˜
nanza–aprendizaje.
Cano, P. A. O. and Alarc
´
on, E. C. P. (2021). Recommenda-
tion systems in education: A review of recommenda-
tion mechanisms in e-learning environments. Revista
Ingenier
´
ıas Universidad de Medell
´
ın, 20(38):147–
158.
Chen, L., Chen, P., and Lin, Z. (2020). Artificial intelli-
gence in education: A review. Ieee Access, 8:75264–
75278.
Chowdhary, K. (2020). Natural language processing. Fun-
damentals of artificial intelligence, pages 603–649.
Deacon, J. (2009). Model-view-controller (mvc) architec-
ture. Online][Citado em: 10 de marc¸o de 2006.]
http://www. jdl. co. uk/briefings/MVC. pdf, 28.
D
´
ıaz-Galiano, M. C., Garc
´
ıa-Cumbreras, M.
´
A., Garc
´
ıa-
Vega, M., Guti
´
errez, Y., C
´
amara, E. M., Piad-Morffis,
A., and Villena-Rom
´
an, J. (2019). Tass 2018: The
strength of deep learning in language understanding
tasks. Procesamiento del Lenguaje Natural, 62:77–
84.
Grier, R. A., Bangor, A., Kortum, P., and Peres, S. C.
(2013). The system usability scale: Beyond stan-
dard usability testing. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol-
ume 57, pages 187–191. SAGE Publications Sage CA:
Los Angeles, CA.
Harpe, S. E. (2015). How to analyze likert and other rating
scale data. Currents in pharmacy teaching and learn-
ing, 7(6):836–850.
Harris, S. C. and Kumar, V. (2018). Identifying student dif-
ficulty in a digital learning environment. In 2018 IEEE
18th International Conference on Advanced Learning
Technologies (ICALT), pages 199–201. IEEE.
Hassenzahl, M. and Tractinsky, N. (2006). User experience-
a research agenda. Behaviour & information technol-
ogy, 25(2):91–97.
Klein, M. H., Kazman, R., Bass, L., Carriere, J., Barbacci,
M., and Lipson, H. (1999). Attribute-based architec-
ture styles. In Working Conference on Software Archi-
tecture, pages 225–243. Springer.
Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu,
H., and Newell, C. (2012). Explaining the user expe-
rience of recommender systems. User modeling and
user-adapted interaction, 22(4):441–504.
Mandal, P. C. (2014). Net promoter score: a conceptual
analysis. International Journal of Management Con-
cepts and Philosophy, 8(4):209–219.
Martin, R. C., Grenning, J., Brown, S., Henney, K., and
Gorman, J. (2018). Clean architecture: a craftsman’s
guide to software structure and design. Number s 31.
Prentice Hall.
McNamara, S., Cyr, M., Rogers, C., and Bratzel, B. (1999).
Lego brick sculptures and robotics in education. In
1999 Annual Conference, pages 4–369.
Moreno, J. J., Bola
˜
nos, L. P., and Navia, M. A. (2010). Ex-
ploraci
´
on de modelos y est
´
andares de calidad para el
producto software. Revista UIS Ingenier
´
ıas, 9(1):39–
53.
Mutiawani, V. et al. (2014). Developing e-learning appli-
cation specifically designed for learning introductory
programming. In 2014 International Conference on
Information Technology Systems and Innovation (IC-
ITSI), pages 126–129. IEEE.
Pazzani, M. J. and Billsus, D. (2007). Content-based rec-
ommendation systems. In The adaptive web, pages
325–341. Springer.
Richards, M. (2015). Software architecture patterns, vol-
ume 4. O’Reilly Media, Incorporated 1005 Graven-
stein Highway North, Sebastopol, CA . . . .
Saldarriaga-Zambrano, P. J., Bravo-Cede
˜
no, G. d. R., and
Loor-Rivadeneira, M. R. (2016). La teor
´
ıa construc-
tivista de jean piaget y su significaci
´
on para la peda-
gog
´
ıa contempor
´
anea. Dominio de las Ciencias, 2(3
Especial):127–137.
Sommerville, I. and Torres, J. A. D. (2011). Ingenier
´
ıa
de software. Addison-Wesley Pearson Educaci
´
on,
M
´
exico, 9 edition.
Wellnhammer, N., Dolata, M., Steigler, S., and Schwabe,
G. (2020). Studying with the help of digital tutors:
design aspects of conversational agents that influence
the learning process.
CHIRA 2022 - 6th International Conference on Computer-Human Interaction Research and Applications
186