(Eds.),  Computational Science – ICCS 2022 (Vol. 
13352,  pp.  484–496).  Springer  International 
Publishing.  https://doi.org/10.1007/978-3-031-08757-
8_41 
Aranha, C., Camacho Villalón, C. L., Campelo, F., Dorigo, 
M., Ruiz, R., Sevaux, M., Sörensen, K., & Stützle, T. 
(2021).  Metaphor-based  metaheuristics,  a  call  for 
action: The elephant in the room. Swarm Intelligence. 
https://doi.org/10.1007/s11721-021-00202-9 
Birattari,  M.,  Paquete,  L.,  &  Stützle,  T.  (2003). 
Classification of Metaheuristics and Design of 
Experiments for the Analysis of Components. 
Camacho‐Villalón, C. L., Dorigo, M., & Stützle, T. (2022). 
Exposing the grey wolf, moth‐flame, whale, firefly, bat, 
and  antlion  algorithms:  Six  misleading  optimization 
techniques inspired by bestial metaphors. International 
Transactions in Operational Research,  itor.13176. 
https://doi.org/10.1111/itor.13176 
Campelo,  F.,  &  Aranha,  C.  (2021).  Sharks,  Zombies  and 
Volleyball:  Lessons  from  the  Evolutionary 
Computation  Bestiary.  Proceedings of the LIFELIKE 
Computing Systems Workshop 2021, 3007. 
Cruz-Duarte, J. M., Ortiz-Bayliss, J. C., Amaya, I., Shi, Y., 
Terashima-Marín, H., & Pillay, N.  (2020). Towards a 
Generalised  Metaheuristic  Model  for  Continuous 
Optimisation  Problems.  Mathematics,  8(11),  2046. 
https://doi.org/10.3390/math8112046 
de  Armas,  J.,  Lalla-Ruiz,  E.,  Tilahun,  S.  L.,  &  Voß,  S. 
(2021).  Similarity  in  metaheuristics:  A  gentle  step 
towards  a  comparison  methodology.  Natural 
Computing.  https://doi.org/10.1007/s11047-020-
09837-9 
Fister  jr,  I.,  Mlakar,  U.,  Brest,  J.,  &  Fister,  I.  (2016, 
October).  A new population-based nature-inspired 
algorithm every month: Is the current era coming to the 
end? 
Glover,  F.  (1986).  Future  paths  for  integer  programming 
and  links  to  artificial  intelligence.  Computers & 
Operations Research,  13(5),  533–549. 
https://doi.org/10.1016/0305-0548(86)90048-1 
Hooker,  J.  N.  (1995).  Testing  heuristics:  We  have  it  all 
wrong.  Journal of Heuristics,  1(1),  33–42. 
https://doi.org/10.1007/BF02430364 
Liu, B., Wang, L., Liu, Y., & Wang, S. (2011). A unified 
framework for population-based metaheuristics. Annals 
of Operations Research,  186(1),  231–262. 
https://doi.org/10.1007/s10479-011-0894-3 
Lones,  M.  A.  (2020).  Mitigating  Metaphors:  A 
Comprehensible  Guide  to  Recent  Nature-Inspired 
Algorithms.  SN Computer Science,  1(1),  49. 
https://doi.org/10.1007/s42979-019-0050-8 
Molina, D., Poyatos, J., Ser, J. D., García, S., Hussain, A., 
&  Herrera,  F.  (2020).  Comprehensive Taxonomies of 
Nature-  and  Bio-inspired  Optimization:  Inspiration 
Versus  Algorithmic  Behavior,  Critical  Analysis 
Recommendations.  Cognitive Computation,  12(5), 
897–939. https://doi.org/10.1007/s12559-020-09730-8 
Ostrowski, D., & Schleis, G. (2008). New Approaches for 
MetaHeuristic  Frameworks:  A  Position  Paper.  AAAI 
Workshop - Technical Report. 
Peres,  F.,  &  Castelli,  M.  (2021).  Combinatorial 
Optimization  Problems  and  Metaheuristics:  Review, 
Challenges,  Design,  and  Development.  Applied 
Sciences,  11(14),  6449. 
https://doi.org/10.3390/app11146449 
Sörensen, K. (2015). Metaheuristics-the metaphor exposed. 
International Transactions in Operational Research, 
22(1), 3–18. https://doi.org/10.1111/itor.12001 
Sörensen, K., & Glover, F. W. (2013). Metaheuristics. In S. 
I. Gass & M. C. Fu (Eds.), Encyclopedia of Operations 
Research and Management Science  (pp.  960–970). 
Springer  US.  https://doi.org/10.1007/978-1-4419-
1153-7_1167 
Stegherr, H., Heider, M., & Hähner, J. (2020). Classifying 
Metaheuristics:  Towards  a  unified  multi-level 
classification  system.  Natural Computing. 
https://doi.org/10.1007/s11047-020-09824-0 
Swan, J., Adriaensen, S., Bishr, M., Burke, E. K., Clark, J. 
A., Durillo, J. J., Hammond, K., Hart, E., Johnson, C. 
G., Kocsis, Z. A., Kovitz, B., Krawiec, K., Martin, S., 
Merelo,  J.  J.,  Minku,  L.  L.,  Pappa,  G.  L.,  Pesch,  E., 
Garc, P., Schaerf, A., … Wagner, S. (2015). A Research 
Agenda for Metaheuristic Standardization. 
Torres-Jiménez,  J.,  &  Pavón,  J.  (2014).  Applications  of 
metaheuristics  in  real-life  problems.  Progress in 
Artificial Intelligence,  2(4),  175–176. 
https://doi.org/10.1007/s13748-014-0051-8 
Tzanetos,  A.,  &  Dounias,  G.  (2021).  Nature  inspired 
optimization  algorithms  or  simply  variations  of 
metaheuristics?  Artificial Intelligence Review,  54(3), 
1841–1862.  https://doi.org/10.1007/s10462-020-
09893-8 
Ven, A., & Johnson, P. (2006). Knowledge for Theory and 
Practice.  Academy of Management Review,  31,  802–
821. https://doi.org/10.2307/20159252 
Voß, S. (2001). Meta-heuristics: The State of the Art. In G. 
Goos,  J.  Hartmanis,  J.  van Leeuwen, & A. Nareyek 
(Eds.), Local Search for Planning and Scheduling (Vol. 
2148,  pp.  1–23).  Springer  Berlin  Heidelberg. 
https://doi.org/10.1007/3-540-45612-0-1 
Wang,  Y.  (2010).  A  Sociopsychological  Perspective  on 
Collective  Intelligence  in  Metaheuristic  Computing: 
International Journal of Applied Metaheuristic 
Computing,  1(1),  110–128. 
https://doi.org/10.4018/jamc.2010102606 
Wolpert, D. H., & Macready, W. G. (1997). No free lunch 
theorems  for  optimization.  IEEE Transactions on 
Evolutionary Computation,  1(1),  67–82. 
https://doi.org/10.1109/4235.585893 
Yang,  X.-S.  (2020).  Nature-inspired optimization 
algorithms (2nd ed.). Elsevier Inc.