Fenning, S. J., Smith, G., & Calderwood, C. (2019).
Realistic Medicine: Changing culture and practice in
the delivery of health and social care. Patient Education
and Counseling, 102(10), 1751–1755.
https://doi.org/10.1016/j.pec.2019.06.024
Gigerenzer, G. (2001). Decision Making : Nonrational
Theories. 5, 3304–3309.
Gligorijević, V., Malod-Dognin, N., & Pržulj, N. (2016).
Integrative methods for analyzing big data in precision
medicine. PROTEOMICS, 16(5), 741–758.
https://doi.org/10.1002/PMIC.201500396
Grady, N. W. (2016). Knowledge Discovery in Data KDD
Meets Big Data. Archives of Civil Engineering, 62(2),
217–228. https://doi.org/10.1515/ace-2015-0076
Hertog, D. Den. (2015). Bridging the gap between
predictive and prescriptive analytics - new optimization
methodology needed. 1–15. Retrieved from
http://www.optimization-
online.org/DB_HTML/2016/12/5779.html
Hulsen, T., Jamuar, S. S., Moody, A. R., Karnes, J. H.,
Varga, O., Hedensted, S., … McKinney, E. F. (2019).
From big data to precision medicine. Frontiers in
Medicine, 6(MAR), 1–14. https://doi.org/10.3389/
fmed.2019.00034
Ipp, C. I., Azevedo, A., & Santos, M. F. (2004). Double-
Coated Bonding Material. Appliance, 61(1), 35.
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang,
Y. (2017). Artificial intelligence in healthcare: Past,
present and future. Stroke and Vascular Neurology,
2(4), 230–243. https://doi.org/10.1136/svn-2017-
000101
Johnson, N., Parbhoo, S., Ross, A. S., & Doshi-Velez, F.
(2021). Learning Predictive and Interpretable
Timeseries Summaries from ICU Data. ArXiv.Org.
Retrieved from https://www.proquest.com/working-
papers/learning-predictive-interpretable-
timeseries/docview/2576125188/se-
2%0Ahttp://lenketjener.uit.no/?url_ver=Z39.88-
2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genr
e=preprint&sid=ProQ:ProQ%3Aengineeringjournals&
atitl
Kennedy, C. E., & Turley, J. P. (2011). Time series analysis
as input for clinical predictive modeling: Modeling
cardiac arrest in a pediatric ICU. Theoretical Biology
and Medical Modelling, Vol. 8. https://doi.org/10.1186/
1742-4682-8-40
Kennedy, C., & Turley, J. (201AD). Time Series Analysis
As Input for Predictive Modeling : Predicting Cardiac
Arrest in a Pediatric Intensive Care Unit. Theoretical
Biology and Medical Modelling, 8(40), 1–25.
Khadanga, S., Aggarwal, K., Joty, S., & Srivastava, J.
(2019).
Using Clinical Notes with Time Series Data for
ICU Management. Retrieved from
http://arxiv.org/abs/1909.09702
Leprince, J., Miller, C., & Zeiler, W. (2021). Data mining
cubes for buildings, a generic framework for
multidimensional analytics of building performance
data. Energy and Buildings, 248, 111195.
https://doi.org/10.1016/j.enbuild.2021.111195
Liu, X., Luo, X., Jiang, C., & Zhao, H. (2019). Difficulties
and challenges in the development of precision
medicine. Clinical Genetics, 95(5), 569–574.
https://doi.org/10.1111/CGE.13511/
McPadden, J., Durant, T. J. S., Bunch, D. R., Coppi, A.,
Price, N., Rodgerson, K., … Schulz, W. L. (2019).
Health care and precision medicine research: Analysis
of a scalable data science platform. Journal of Medical
Internet Research, 21(4), 1–11.
https://doi.org/10.2196/13043
Mosavi, N. S., & Santos, M. F. (2020). How prescriptive
analytics influences decision making in precision
medicine. Procedia Computer Science, 177, 528–533.
https://doi.org/10.1016/j.procs.2020.10.073
Mosavi, N. S., & Santos, M. F. (2021). To what extent
healthcare analytics influences decision making in
precision medicine. Procedia Computer Science,
198(2021), 353–359. https://doi.org/10.1016/j.procs.20
21.12.253
Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R.,
Colin, S., & Wirth, R. (2000). Crisp-Dm 1.0. CRISP-
DM Consortium, 76.
Sadat Mosavi, N., & Filipe Santos, M. (2021). Adoption of
Precision Medicine; Limitations and Considerations
(David C. Wyld et al. (Eds), Ed.).
https://doi.org/10.5121/csit.2021.110302
Seyhan, A. A., & Carini, C. (2019). Are innovation and new
technologies in precision medicine paving a new era in
patients centric care? Journal of Translational
Medicine, 17(1), 1–28. https://doi.org/10.1186/s12967-
019-1864-9
Williams, A. M., Liu, Y., Regner, K. R., Jotterand, F., Liu,
P., & Liang, M. (2018). Artificial intelligence,
physiological genomics, and precision medicine.
Physiological Genomics, 50(4), 237–243.
https://doi.org/10.1152/PHYSIOLGENOMICS.00119.
2017
Wu, P. Y., Cheng, C. W., Kaddi, C. D., Venugopalan, J.,
Hoffman, R., & Wang, M. D. (2017). -Omic and
Electronic Health Record Big Data Analytics for
Precision Medicine. IEEE Transactions on Biomedical
Engineering, 64(2), 263–273. https://doi.org/10.1109/
TBME.2016.2573285
Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation
for data mining. Applied Artificial Intelligence,
17(5–
6), 375–381. https://doi.org/10.1080/713827180
Zhang, Y., Silvers, C. T., & Randolph, A. G. (2007). Real-
time evaluation of patient monitoring algorithms for
critical care at the bedside. Annual International
Conference of the IEEE Engineering in Medicine and
Biology - Proceedings, 2783–2786. https://doi.org/
10.1109/IEMBS.2007.4352906