The American Journal of Sports Medicine, 24(2), 211–
217. https://doi.org/10.1177/036354659602400217
Burr, D. B. (2011). Why bones bend but don’t break.
Journal of Musculoskeletal & Neuronal Interactions,
11(4), 270–285.
Burr, D. B., Forwood, M. R., Fyhrie, D. P., Martin, R. B.,
Schaffler, M. B., & Turner, C. H. (1997). Bone
microdamage and skeletal fragility in osteoporotic and
stress fractures. Journal of Bone and Mineral Research:
The Official Journal of the American Society for
Bone and Mineral Research, 12(1), 6–15.
https://doi.org/10.1359/jbmr.1997.12.1.6
Burr, D. B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska,
M., Finestone, A., Hoshaw, S., Saiag, E., & Simkin, A.
(1996). In vivo measurement of human tibial strains
during vigorous activity. Bone, 18(5), 405–410.
Derrick, T. R., Edwards, W. B., Fellin, R. E., & Seay, J. F.
(2016). An integrative modeling approach for the
efficient estimation of cross sectional tibial stresses
during locomotion. Journal of Biomechanics, 49(3),
429–435. https://doi.org/10.1016/j.jbiomech.2016.01.0
03
Edwards, W. B., Taylor, D., Rudolphi, T. J., Gillette, J. C.,
& Derrick, T. R. (2009). Effects of Stride Length and
Running Mileage on a Probabilistic Stress Fracture
Model. Medicine & Science in Sports & Exercise,
41(12), 2177–2184. https://doi.org/10.1249/MSS.0b01
3e3181a984c4
Edwards, W. B., Taylor, D., Rudolphi, T. J., Gillette, J. C.,
& Derrick, T. R. (2010). Effects of running speed on a
probabilistic stress fracture model. Clinical
Biomechanics (Bristol, Avon), 25(4), 372–377.
https://doi.org/10.1016/j.clinbiomech.2010.01.001
Ellison, M. A., Akrami, M., Fulford, J., Javadi, A. A., &
Rice, H. M. (2020). Three dimensional finite element
modelling of metatarsal stresses during running.
Journal of Medical Engineering & Technology, 44(7),
368–377. https://doi.org/10.1080/03091902.2020.1799
092
Ellison, M. A., Fulford, J., Javadi, A., & Rice, H. M. (2021).
Do non-rearfoot runners experience greater second
metatarsal stresses than rearfoot runners? Journal of
Biomechanics, 126, 110647. https://doi.org/10.1016/
j.jbiomech.2021.110647
Ellison, M. A., Kenny, M., Fulford, J., Javadi, A., & Rice,
H. M. (2020). Incorporating subject-specific geometry
to compare metatarsal stress during running with
different foot strike patterns. Journal of Biomechanics,
105, 109792. https://doi.org/10.1016/j.jbiomech.20
20.109792
Fetzer, G. B., & Wright, R. W. (2006). Metatarsal Shaft
Fractures and Fractures of the Proximal Fifth
Metatarsal. Clinics in Sports Medicine, 25
(1), 139–150.
https://doi.org/10.1016/j.csm.2005.08.014
Field, A. E., Gordon, C. M., Pierce, L. M., Ramappa, A., &
Kocher, M. S. (2011). Prospective study of physical
activity and risk of developing a stress fracture among
preadolescent and adolescent girls. Archives of
Pediatrics & Adolescent Medicine, 165(8), 723–728.
https://doi.org/10.1001/archpediatrics.2011.34
Firminger, C. R., Fung, A., Loundagin, L. L., & Edwards,
W. B. (2017). Effects of footwear and stride length on
metatarsal strains and failure in running. Clinical
Biomechanics (Bristol, Avon), 49, 8–15.
https://doi.org/10.1016/j.clinbiomech.2017.08.006
Gross, T. S., & Bunch, R. P. (1989). A mechanical model
of metatarsal stress fracture during distance running.
The American Journal of Sports Medicine, 17(5), 669–
674. https://doi.org/10.1177/036354658901700514
Iwamoto, J., & Takeda, T. (2003). Stress fractures in
athletes: Review of 196 cases. Journal of Orthopaedic
Science, 8(3), 273–278. https://doi.org/10.1007/
s10776-002-0632-5
Knapik, J., Reynolds, K. L., & Harman, E. (2004). Soldier
load carriage: Historical, physiological, biomechanical,
and medical aspects. Military Medicine, 169(1), 45–56.
Matijevich, E. S., Branscombe, L. M., Scott, L. R., & Zelik,
K. E. (2019). Ground reaction force metrics are not
strongly correlated with tibial bone load when running
across speeds and slopes: Implications for science,
sport and wearable tech. PLOS ONE, 14(1), e0210000.
https://doi.org/10.1371/journal.pone.0210000
Matijevich, E. S., Scott, L. R., Volgyesi, P., Derry, K. H.,
& Zelik, K. E. (2020). Combining wearable sensor
signals, machine learning and biomechanics to estimate
tibial bone force and damage during running. Human
Movement Science, 74, 102690. https://doi.org/
10.1016/j.humov.2020.102690
Meardon, S. A., & Derrick, T. R. (2014). Effect of step
width manipulation on tibial stress during running.
Journal of Biomechanics, 47(11), 2738–2744.
https://doi.org/10.1016/j.jbiomech.2014.04.047
Meardon, S. A., Willson, J. D., Gries, S. R., Kernozek, T.
W., & Derrick, T. R. (2015). Bone stress in runners with
tibial stress fracture. Clinical Biomechanics, 30(9), 895–
902. https://doi.org/10.1016/j.clinbiomech.2015.07.012
Milgrom, C., Finestone, A., Simkin, A., Ekenman, I.,
Mendelson, S., Millgram, M., Nyska, M., Larsson, E.,
& Burr, D. (2000). In-vivo strain measurements to
evaluate the strengthening potential of exercises on the
tibial bone. The Journal of Bone and Joint Surgery.
British Volume, 82(4), 591–594.
Milgrom, C., Giladi, M., Stein, M., Kashtan, H., Margulies,
J. Y., Chisin, R., Steinberg, R., & Aharonson, Z. (1985).
Stress fractures in military recruits. A prospective study
showing an unusually high incidence. The Journal of
Bone and Joint Surgery. British Volume, 67(5), 732–735.
https://doi.org/10.1302/0301-620X.67B5.4055871
Nunns, M., House, C., Rice, H., Mostazir, M., Davey, T.,
Stiles, V., Fallowfield, J., Allsopp, A., & Dixon, S.
(2016). Four biomechanical and anthropometric
measures predict tibial stress fracture: A prospective
study of 1065 Royal Marines. British Journal of Sports
Medicine, bjsports-2015-095394. https://doi.org/10.11
36/bjsports-2015-095394
Orr, R. M., Pope, R., Johnston, V., & Coyle, J. (2014).
Soldier occupational load carriage: A narrative review
of associated injuries. International Journal of Injury
Control and Safety Promotion, 21(4), 388–396.
https://doi.org/10.1080/17457300.2013.833944