the fact that the device is designed in a traditional way
to handle low flow rates from thermosyphons or small
pumping systems.
There is a difference of 12.13% between the
efficiency of the real system and the simulation
carried out. This is because the simulation method
applied to the present analysis could be considered
static, as it does not evaluate the system in real time
intervals, subjecting the code to solar radiation data
that vary with time. However, the development of this
type of evaluations allows generating estimates of the
behavior in an approximate way.
Finally, the thermodynamic libraries of the ESS
software differ a little compared to the
thermodynamic tables provided in the bibliography,
this may present small changes in calculations made
through tools that do not have thermodynamic
libraries and require declaring those values manually,
for the development of the simulations.
REFERENCES
Ajdad, H., Filali Baba, Y., Al Mers, A., Merroun, O.,
Bouatem, A., & Boutammachte, N. (2019). Particle
swarm optimization algorithm for optical-geometric
optimization of linear fresnel solar concentrators.
Renewable Energy, 130, 992-1001.
https://doi.org/10.1016/j.renene.2018.07.001
Bellos, E. (2019). Progress in the design and the
applications of linear Fresnel reflectors – A critical
review. Thermal Science and Engineering Progress,
10, 112-137. https://doi.org/10.1016/j.tsep.2019.01.014
Bellos, E., Tzivanidis, C., & Moghimi, M. A. (2019).
Reducing the optical end losses of a linear Fresnel
reflector using novel techniques. Solar Energy, 186,
247-256. https://doi.org/10.1016/j.solener.2019.05.020
de Sá, A. B., Pigozzo Filho, V. C., Tadrist, L., & Passos, J.
C. (2021). Experimental study of a linear Fresnel
concentrator: A new procedure for optical and heat
losses characterization. Energy, 232, 121019.
https://doi.org/10.1016/j.energy.2021.121019
Famiglietti, A., & Lecuona, A. (2021). Small-scale linear
Fresnel collector using air as heat transfer fluid:
Experimental characterization. Renewable Energy, 176,
459-474. https://doi.org/10.1016/j.renene.2021.05.048
Ghodbane, M., Boumeddane, B., Said, Z., & Bellos, E.
(2019). A numerical simulation of a linear Fresnel solar
reflector directed to produce steam for the power plant.
Journal of Cleaner Production, 231, 494-508.
https://doi.org/10.1016/j.jclepro.2019.05.201
López, J. C., Escobar, A., Cárdenas, D. A., & Restrepo, Á.
(2021). Parabolic trough or linear fresnel solar
collectors? An exergy comparison of a solar-assisted
sugarcane cogeneration power plant. Renewable
Energy, 165, 139-150.
https://doi.org/10.1016/j.renene.2020.10.138
Lovegrove, K., & Pye, J. (2021). Chapter 2—Fundamental
principles of concentrating solar power systems. En K.
Lovegrove & W. Stein (Eds.), Concentrating Solar
Power Technology (Second Edition) (pp. 19-71).
Woodhead Publishing. https://doi.org/10.1016/B978-0-
12-819970-1.00013-X
Lovegrove, K., & Stein, W. (2021). Chapter 1—
Introduction to concentrating solar power technology.
En K. Lovegrove & W. Stein (Eds.), Concentrating
Solar Power Technology (Second Edition) (pp. 3-17).
Woodhead Publishing. https://doi.org/10.1016/B978-0-
12-819970-1.00012-8
Mills, D. R. (2012). 6—Linear Fresnel reflector (LFR)
technology. En K. Lovegrove & W. Stein (Eds.),
Concentrating Solar Power Technology (pp. 153-196).
Woodhead Publishing.
https://doi.org/10.1533/9780857096173.2.153
Moghimi, M. A., Craig, K. J., & Meyer, J. P. (2017).
Simulation-based optimisation of a linear Fresnel
collector mirror field and receiver for optical, thermal
and economic performance. Solar Energy, 153, 655-
678. https://doi.org/10.1016/j.solener.2017.06.001
Moya, E. Z. (2021). Chapter 7—Parabolic-trough
concentrating solar power systems. En K. Lovegrove &
W. Stein (Eds.), Concentrating Solar Power
Technology (Second Edition) (pp. 219-266). Woodhead
Publishing. https://doi.org/10.1016/B978-0-12-
819970-1.00009-8
Pitz-Paal, R. (2014). Chapter 19—Solar Energy –
Concentrating Solar Power. En T. M. Letcher (Ed.),
Future Energy (Second Edition) (pp. 405-431).
Elsevier. https://doi.org/10.1016/B978-0-08-099424-
6.00019-3
Pitz-Paal, R. (2020). 19—Concentrating Solar Power. En T.
M. Letcher (Ed.), Future Energy (Third Edition) (pp.
413-430). Elsevier. https://doi.org/10.1016/B978-0-08-
102886-5.00019-0
Platzer, W. J., Mills, D., & Gardner, W. (2021). Chapter
6—Linear Fresnel Collector (LFC) solar thermal
technology. En K. Lovegrove & W. Stein (Eds.),
Concentrating Solar Power Technology (Second
Edition) (pp. 165-217). Woodhead Publishing.
https://doi.org/10.1016/B978-0-12-819970-1.00006-2
Ross, M. L. (2016). How the 1973 Oil Embargo Saved the
Planet. Foreign Affaris, 5.
Rungasamy, A. E., Craig, K. J., & Meyer, J. P. (2015). 3-D
CFD Modeling of a Slanted Receiver in a Compact
Linear Fresnel Plant with Etendue-Matched Mirror
Field. Energy Procedia, 69, 188-197.
https://doi.org/10.1016/j.egypro.2015.03.022
Rungasamy, A. E., Craig, K. J., & Meyer, J. P. (2021). A
review of linear Fresnel primary optical design
methodologies. Solar Energy, 224, 833-854.
https://doi.org/10.1016/j.solener.2021.06.021
Said, Z., Ghodbane, M., Hachicha, A. A., & Boumeddane,
B. (2019). Optical performance assessment of a small
experimental prototype of linear Fresnel reflector. Case
Studies in Thermal Engineering, 16, 100541.
https://doi.org/10.1016/j.csite.2019.100541