REFERENCES 
Bernal-Barquero,  C.  E.,  Vázquez-Zapién,  G.  J.,  et.al. 
(2019).  Review  of  alterations in  gene  expression  and 
apoptotic  pathways  caused  in  nephrotoxicity induced 
by  cisplatin.  Revisión  de  las  alteraciones  en  la 
expresión  génica  y  vías  apoptóticas  provocadas  en  la 
nefrotoxicidad  inducida  por  cisplatino.  Nefrologia, 
39(4), 362-371.  
Beinke, S., & Ley, S. C. (2004). Functions of NF-kappaB1 
and  NF-kappaB2  in  immune  cell  biology.  The 
Biochemical journal, 382(Pt 2), 393-409. 
Cankara,  F.N.,  Günaydın,  C.,  et.al.  Agomelatine  confers 
neuroprotection against cisplatin-induced hippocampal 
neurotoxicity.  Metabolic Brain Disease  36,  339-349 
(2021).  
Chakraborti, A., & Sahi, P. K. (2020). Vinblastine-induced 
acral hyperpigmentation. Indian Pediatrics, 57(6), 581-
582.  
Choi,  A.  R.,  Kim,  J.  H.,  et.al.  (2014).  Thioridazine 
specifically  sensitizes  drug-resistant  cancer  cells 
through  highly  increase  in  apoptosis  and  P-gp 
inhibition. Tumour biology, 35(10), 9831–9838.  
Dong, Z., & Atherton, S. S. (2007). Tumor necrosis factor-
alpha  in  cisplatin  nephrotoxicity:  a  homebred  foe. 
Kidney international, 72(1), 5-7. 
Fang,  C.  Y.,  Lou,  D.  Y.,  et.al. (2021).  Natural products: 
potential  treatments  for  cisplatin-induced 
nephrotoxicity.  Acta pharmacologica Sinica,  42(12), 
1951-1969.  
Feldman, D. R., Bosl, G. J., et.al. (2008). Medical treatment 
of advanced testicular cancer. JAMA, 299(6), 672-684.  
Ghosh S. (2019). Cisplatin: The first metal based anticancer 
drug. Bioorganic Chemistry, 88, 102925. 
Hayden, M. S., & Ghosh, S.  (2008).  Shared  principles in 
NF-kappaB signaling. Cell, 132(3), 344-362. 
Han,  Y.,  Yin, W.,  et.al.  (2018).  Intracellular  glutathione-
depleting  polymeric  micelles  for  cisplatin  prodrug 
delivery  to  overcome  cisplatin  resistance  of  cancers. 
Journal of controlled release, 273, 30-39.  
Holzer, A. K., Manorek, G. H.,et.al. (2006). Contribution 
of  the  major  copper  influx  transporter  CTR1  to  the 
cellular  accumulation  of  cisplatin,  carboplatin,  and 
oxaliplatin.  Molecular pharmacology,  70(4),  1390-
1394. 
Kleih M, Böpple K, et.al. (2019). Direct impact of cisplatin 
on mitochondria induces ROS production that dictates 
cell  fate  of  ovarian  cancer  cells.  Cell Death & 
Disease,10(11):851.  
Li, Z.,  Zilberman,  et.al. (2019).  Electrochemical  methods 
for probing  DNA  damage mechanisms  and designing 
cisplatin-based  combination  chemotherapy. 
BioTechniques, 66(3), 135-142.  
Lawrence  T.  (2009).  The  nuclear  factor  NF-kappaB 
pathway  in  inflammation. Cold Spring Harbor 
Perspectives in Biology, 1(6), a001651. 
Li, H., Wang, C., et.al. (2021). PARP1 Inhibitor Combined 
With  Oxaliplatin  Efficiently  Suppresses  Oxaliplatin 
Resistance  in  Gastric  Cancer-Derived  Organoids  via 
Homologous  Recombination  and  the  Base  Excision 
Repair  Pathway.  Frontiers in cell and developmental 
biology, 9, 719192. 
Liu, X.,  Xu,  M., et.al.  (2022). PD-1 Alleviates Cisplatin-
Induced Muscle Atrophy by Regulating Inflammation 
and  Oxidative  Stress.  Antioxidants (Basel, 
Switzerland), 11(9), 1839. 
Luyu  Qi,  Qun  Luo,  et.al.  (2019).  Chemical  research  in 
toxicology 32,8:1469-1486  
Lanjun Cheng, Chan Li, et.al. (2019). Cisplatin reacts with 
histone  H1  and  the  adduct  forms  a  ternary  complex 
with DNA, Metallomics, 11,3:556-564 
Manohar, S., & Leung, N. (2018). Cisplatin nephrotoxicity: 
a review of the literature. Journal of nephrology, 31,1, 
15-25 
Paul,  W.,  Flint,  MD.  (2021).  Cummings  otolaryngology: 
head and neck surgery. Elsevier Inc. 18, 260-268.e2 
Papich, M. (2016). Sauders handbook of veterinary drugs.  
Pabla,  N.,  &  Dong,  Z.  (2008).  Cisplatin  nephrotoxicity: 
mechanisms  and  renoprotective  strategies.  Kidney 
international, 73(9), 994-1007.  
Padgett, L. E., Broniowska, K. A., et.al. (2013). The role of 
reactive  oxygen  species  and  proinflammatory 
cytokines in type 1 diabetes pathogenesis. Annals of the 
New York Academy of Sciences, 1281(1), 16-35. 
Park, C. H., Lee, A. Y., et.al. (2019). Protective Effects of 
Serotonin and its Derivatives, N-Feruloylserotonin and 
N-(p-Coumaroyl)  Serotonin,  Against  Cisplatin-
Induced Renal Damage in Mice. The American journal 
of Chinese medicine, 47(2), 369-383.  
Ramesh,  G.,  &  Brian  Reeves,  W.  (2006).  Cisplatin 
increases  TNF-alpha  mRNA  stability  in  kidney 
proximal tubule cells. Renal Failure, 28(7), 583-592. 
Santos,  N.,  Ferreira,  R.  S.,  et.al.  (2020).  Overview  of 
cisplatin-induced neurotoxicity and ototoxicity, and the 
protective agents. Food and Chemical Toxicology, 136, 
111079.  
Santos,  N.,  Ferreira,  R.  S.,  et.al.  (2020).  Overview  of 
cisplatin-induced neurotoxicity and ototoxicity, and the 
protective agents. Food and chemical toxicology, 136, 
111079.  
Volarevic,  V.,  Djokovic,  B.,  et.al.  (2019).  Molecular 
mechanisms  of  cisplatin-induced  nephrotoxicity:  a 
balance on the knife edge between renoprotection and 
tumor  toxicity. Journal of biomedical science, 26(1), 
25.  
Wang  Langli,  Li  Na,  et.al  (2016).    Research  progress  of 
first-line chemotherapy  drugs  for  non-small  cell  lung 
cancer Chinese pharmacy, 27 (5), 4 
Wellenberg,  A.,  Brinkmann,  V.,  et.al.  (2021).  Cisplatin-
induced  neurotoxicity  involves  the  disruption  of 
serotonergic  neurotransmission.  Pharmacological 
research, 174, 105921.  
Xiao, G., Harhaj, E. W., et.al. (2001). NF-kappaB-inducing 
kinase regulates the processing of NF-kappaB2 p100. 
Molecular Cell, 7(2), 401-409. 
Xu, J., & Gewirtz, D. A. (2022). Is Autophagy Always a 
Barrier to Cisplatin Therapy? Biomolecules, 12(3), 463.  
Yimit, A., Adebali, O., et.al. Differential damage and repair 
of DNA-adducts induced by anti-cancer drug cisplatin 
across mouse organs. Nature Communications, 10, 309