Bhojanapalli S, Chakrabarti A, Glasner D, et al.
Understanding Robustness of Transformers for Image
Classification [J]. 2021.
Breier M, Summers R M, Ginneken B V, et al. Active
contours for localizing polyps in colonoscopic NBI
image data [J]. International Society for Optics and
Photonics, 2011, 7963: 79632M.
Cao C X, Dong H W. Mesh model segmentation based on
region growth [J]. Computer Engineering and
Applications, 2008.
Chen S, Tan X, Wang B, et al. Reverse attention for salient
object detection; proceedings of the Proceedings of the
European Conference on Computer Vision (ECCV), F,
2018 [C].
Done J Z, Fang S H. Young-onset colorectal cancer: A
review [J]. World Journal of Gastrointestinal
Oncology, 2021, 13(8): 856.
Dong B, Wang W, Fan D P, et al. Polyp-PVT: Polyp
Segmentation with Pyramid Vision Transformers [J].
2021.
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is
Worth 16x16 Words: Transformers for Image
Recognition at Scale [J]. 2020.
Fang Y, Chen C, Yuan Y, et al. Selective feature
aggregation network with area-boundary constraints
for polyp segmentation; proceedings of the
International Conference on Medical Image Computing
and Computer-Assisted Intervention, F, 2019 [C].
Springer.
Fan D-P, Ji G-P, Zhou T, et al. Pranet: Parallel reverse
attention network for polyp segmentation; proceedings
of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, F,
2020 [C]. Springer.
Fan D-P, Gong C, Cao Y, et al. Enhanced-alignment
measure for binary foreground map evaluation [J].
arXiv preprint arXiv:180510421, 2018.
Fan D-P, Cheng M-M, Liu Y, et al. Structure-measure: A
new way to evaluate foreground maps; proceedings of
the Proceedings of the IEEE international conference
on computer vision, F, 2017 [C].
freddie, Bray, Jacques, et al. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries [J]. CA: a
cancer journal for clinicians, 2018.
Greve D N, Fischl B. Accurate and robust brain image
alignment using boundary-based registration [J].
Neuroimage, 2009, 48(1): 63-72.
Huang G, Liu Z, Van Der Maaten L, et al. Densely
connected convolutional networks; proceedings of the
Proceedings of the IEEE conference on computer
vision and pattern recognition, F, 2017 [C].
He K, Zhang X, Ren S, et al. Deep Residual Learning for
Image Recognition [J]. IEEE, 2016.
Jha D, Smedsrud P H, Riegler M A, et al. Kvasir-seg: A
segmented polyp dataset; proceedings of the
International Conference on Multimedia Modeling, F,
2020 [C]. Springer.
Kaminski M F, Robertson D J, Senore C, et al. Optimizing
the Quality of Colorectal Cancer Screening Worldwide
[J]. Gastroenterology, 2019, 158(2).
Kim T, Lee H, Kim D. UACANet: Uncertainty Augmented
Context Attention for Polyp Segmentation;
proceedings of the Proceedings of the 29th ACM
International Conference on Multimedia, F, 2021 [C].
Lieberman D A, Rex D K, Winawer S J, et al. Guidelines
for colonoscopy surveillance after screening and
polypectomy: a consensus update by the US Multi-
Society Task Force on Colorectal Cancer [J].
Gastroenterology, 2012, 143(3): 844-57.
Liu Z, Lin Y, Cao Y, et al. Swin Transformer: Hierarchical
Vision Transformer using Shifted Windows [J]. 2021.
Liu J, Zhang W, Tang Y, et al. Residual feature aggregation
network for image super-resolution; proceedings of the
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, F, 2020 [C].
Liu S, Huang D. Receptive field block net for accurate and
fast object detection; proceedings of the Proceedings of
the European Conference on Computer Vision
(ECCV), F, 2018 [C].
Long J, Shelhamer E, Darrell T. Fully convolutional
networks for semantic segmentation; proceedings of
the Proceedings of the IEEE conference on computer
vision and pattern recognition, F, 2015 [C].
Margolin R, Zelnik-Manor L, Tal A. How to evaluate
foreground maps?; proceedings of the Proceedings of
the IEEE conference on computer vision and pattern
recognition, F, 2014 [C].
Parmar N, Vaswani A, Uszkoreit J, et al. Image
Transformer [J]. 2018.
Patel K, Bur A M, Wang G. Enhanced U-Net: A Feature
Enhancement Network for Polyp Segmentation [J].
2021.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional
networks for biomedical image segmentation;
proceedings of the International Conference on
Medical image computing and computer-assisted
intervention, F, 2015 [C]. Springer.
Simonyan K, Zisserman A. Very Deep Convolutional
Networks for Large-Scale Image Recognition [J].
Computer Science, 2014.
Silva J, Histace A, Romain O, et al. Toward embedded
detection of polyps in wce images for early diagnosis
of colorectal cancer [J]. International journal of
computer assisted radiology and surgery, 2014, 9(2):
283-93.
Tajbakhsh N, Gurudu S R, Liang J. Automated polyp
detection in colonoscopy videos using shape and
context information [J]. IEEE transactions on medical
imaging, 2015, 35(2): 630-44.
Varga-Szemes A, Muscogiuri G, Schoepf U J, et al.
Clinical feasibility of a myocardial signal intensity
threshold-based semi-automated cardiac magnetic
resonance segmentation method [J]. European
radiology, 2016, 26(5): 1503-11.
Vázquez D, Bernal J, Sánchez F J, et al. A benchmark for
endoluminal scene segmentation of colonoscopy