= 93.6% 
This proposal 
Validation algorithms: 5-Fold Cross-Validation and 
Hold Out (80-20) Accuracy: 
1-NN:  5-FCV = 100%, HO = 97%; MLP: 5-FCV = 
100%, HO = 98% 
ACKNOWLEDGEMENTS 
The  authors  would  like  to  thank  the  Instituto 
Politécnico  Nacional  (COFAA,  EDI,  and  SIP),  the 
CONACyT, and SNI for their support to develop this 
work 
REFERENCES 
Ariza-Lopez,  F.,  Rodríguez-Avi,  J.,  Alba-Fernández,  V., 
2018.  Control  Estricto  de Matrices  de  Confusión  por 
Medio  de  Distribuciones  Multinomiales.  GeoFocus. 
Revista  Internacional  de  Ciencia  y  Tecnología  de  la 
Información Geográfica. N. 21, p. 215-226. 
Arora, A.,  Tripathi, A.,  Bhan, A., 2021.  Classification  of 
Cervical  Cancer  Detection  using  Machine  Learning 
Algorithms.  2021  6th  International  Conference  on 
Inventive Computation Technologies (ICICT) 
Bateman, B., Jha, R., Johnston, B., Mathur, I., 2020. The 
The  Supervised  Learning  Workshop:  A  New, 
Interactive  Approach  to  Understanding  Supervised 
Learning Algorithms. Packt Publishing Ltd. 
Cohen,  P.,  Jhingran,  A.,  Oaknin,  A.,  Denny,  L.,  2019. 
Cervical Cancer. Lancet, 393: 169–82. 
Gobierno de México, Secretaría de Salud, Estadísticas de 
Cáncer  de  Mama  y  Cáncer  Cérvico  Uterino,  2015. 
https://www.gob.mx/salud/acciones-y-
programas/informacion-
estadistica#:~:text=En%20M%C3%A9xico%20tambi
%C3%A9n%20a%20partir,35.4%20casos%20por%20
100%2C000%20mujeres. 
Hossin,  M.,  and  Sulaiman,  M.,  2015.  A  Review  on 
Evaluation Metrics for Data Classification Evaluations. 
International  Journal  of  Data  Mining  &  Knowledge 
Management Process (IJDKP), Vol.5 (2). 
INSTITUTO NACIONAL DE LAS MUJERES, SISTEMA 
DE  INDICADORES  DE  GÉNERO,  CÁNCER  DE 
MAMA  Y  CERVICO-UTERINO,  2021, 
http://estadistica.inmujeres.gob.mx/formas/tarjetas/ca
ma_cacu.pdf 
Kumar,  R.,  Indrayan,  A.,  2011.  Receiver  Operating 
Characteristic (ROC) Curve for Medical Researchers. 
Indian Pediatrics, Vol. 48. 
Link  1  https://www.who.int/es/news-room/fact-
sheets/detail/cervical-cancer 
Link  2 
https://archive.ics.uci.edu/ml/datasets/Cervical+cancer
+%28Risk+Factors%29 
Mehmood, M., Rizwan, M., Gregus, M., Abbas, S., 2021. 
Machine Learning Assisted Cervical Cancer Detection. 
Frontiers in Public Health. 
Rahaman, M., Li, C., Yao, Y., Kulwa, F., Wu, X., Li, X., 
Wang, Q., 2021. DeepCervix: A Deep Learning-based 
Framework  for  the  Classification  of  Cervical  Cells 
Using  Hybrid  Deep  Feature  Fusion  Techniques. 
Computers in Biology and Medicine, Vol. 136. 
Rehman, A., Ali. N., Taj, I., Sajid, M., Karimov, K., 2020. 
An  Automatic  Mass  Screening  System  for  Cervical 
Cancer  Detection  Based  on  Convolutional  Neural 
Network. Mathematical Problems in Engineering, Vol. 
2020. 
Shai,  S.,  and  Shai,  B.,  2014.  Understanding  Machine 
Learning:  From  Theory  to  Algorithms.  Cambridge 
University Press. 
Tan, X., Li, K., Zhang, J., Wang, W., Wu, B., Wu, J., Li, 
X.,  Huang,  X.,  2021.  Automatic  model  for  cervical 
cancer  screening  based  on  convolutional  neural 
network:  a  retrospective,  multicohort,  multicenter 
study. Cancer Cell Int, 21(1):35. 
Tripathi, A.,  Arora, A., Bhan,  A., 2021. Classification  of 
cervical cancer using Deep Learning Algorithm. 2021 
5th International Conference on Intelligent Computing 
and Control Systems (ICICCS) 
Yang,  S.,  Berdine,  G.,  2017.  The  receiver  operating 
characteristic (ROC) curve. The Southwest Respiratory 
and Critical Care Chronicles, Vol 5(19).